These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25855700)

  • 1. Closed-loop, ultraprecise, automated craniotomies.
    Pak N; Siegle JH; Kinney JP; Denman DJ; Blanche TJ; Boyden ES
    J Neurophysiol; 2015 Jun; 113(10):3943-53. PubMed ID: 25855700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated drill-stop by SVM classified audible signals.
    Pohl BM; Jungmann JO; Christ O; Hofmann UG
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():956-9. PubMed ID: 23366052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures.
    Rynes ML; Ghanbari L; Schulman DS; Linn S; Laroque M; Dominguez J; Navabi ZS; Sherman P; Kodandaramaiah SB
    Nat Protoc; 2020 Jun; 15(6):1992-2023. PubMed ID: 32405052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What bone part is important to remove in accessing the suprachiasmatic region with less frontal lobe retraction in frontotemporal craniotomies.
    Kinoshita M; Tanaka S; Nakada M; Ozaki N; Hamada J; Hayashi Y
    World Neurosurg; 2012 Feb; 77(2):342-8. PubMed ID: 22079813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Craniobot: A computer numerical controlled robot for cranial microsurgeries.
    Ghanbari L; Rynes ML; Hu J; Schulman DS; Johnson GW; Laroque M; Shull GM; Kodandaramaiah SB
    Sci Rep; 2019 Jan; 9(1):1023. PubMed ID: 30705287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety Analysis of a New Portable Electrical Drill With a Smart Autostop Mechanism for Bedside Cranial Procedures.
    Assumpcao de Monaco B; Benjamin CG; Doomi A; Taylor R; Stringfellow CE; Benveniste RJ; Jagid JR; Graciolli Cordeiro J
    Oper Neurosurg (Hagerstown); 2023 Oct; 25(4):311-314. PubMed ID: 37543731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cranionavigator combining a high-speed drill and a navigation system for skull base surgery--technical note.
    Ikeda K; Shoin K; Taguchi H; Yamano J; Yamashita J
    Neurol Med Chir (Tokyo); 1999 Sep; 39(9):701-7; discussion 707-8. PubMed ID: 10563124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building an open-source robotic stereotaxic instrument.
    Coffey KR; Barker DJ; Ma S; West MO
    J Vis Exp; 2013 Oct; (80):e51006. PubMed ID: 24192514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new stabilizing craniotomy-duratomy technique for single-cell anatomo-electrophysiological exploration of living intact brain networks.
    Pinault D
    J Neurosci Methods; 2005 Feb; 141(2):231-42. PubMed ID: 15661305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.
    Marcus HJ; Seneci CA; Payne CJ; Nandi D; Darzi A; Yang GZ
    Neurosurgery; 2014 Mar; 10 Suppl 1():84-95; discussion 95-6. PubMed ID: 23921708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "no-drill" technique of anterior clinoidectomy: a cranial base approach to the paraclinoid and parasellar region.
    Chang DJ
    Neurosurgery; 2009 Mar; 64(3 Suppl):ons96-105; discussion ons105-6. PubMed ID: 19240577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor resection by stereotactic craniotomy using the Brown-Roberts-Wells system.
    Maciunas RJ
    J Image Guid Surg; 1995; 1(4):208-16. PubMed ID: 9079447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-drilling anchor screws for dural tenting sutures: technical note.
    Park J
    Surg Neurol; 2009 Aug; 72(2):175-6. PubMed ID: 18617249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Craniotomies without burr holes using an oscillating saw.
    DiMeco F; Li KW; Mendola C; CantĂș G; Solero CL
    Acta Neurochir (Wien); 2004 Sep; 146(9):995-1001; discussion 1001. PubMed ID: 15340811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated system for planning, navigation and robotic assistance for skull base surgery.
    Xia T; Baird C; Jallo G; Hayes K; Nakajima N; Hata N; Kazanzides P
    Int J Med Robot; 2008 Dec; 4(4):321-30. PubMed ID: 18803337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3-dimensional computed tomographic procedure for planning retrosigmoid craniotomy.
    Hamasaki T; Morioka M; Nakamura H; Yano S; Hirai T; Kuratsu J
    Neurosurgery; 2009 May; 64(5 Suppl 2):241-5; discussion 245-6. PubMed ID: 19404104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small modification to a decompressive craniotomy to improve the brain-cranium interface: technical note.
    Kools D; Menovsky T; Ost J; De Ridder D
    Minim Invasive Neurosurg; 2009 Feb; 52(1):59-60. PubMed ID: 19247909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Craniotomy using image-guided oscillating saw: technical note.
    Ferroli P; Franzini A; Marchetti M; Maccagnano E; Broggi G
    Neurol Res; 2006 Mar; 28(2):145-8. PubMed ID: 16551431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Large Lateral Craniotomy Procedure for Mesoscale Wide-field Optical Imaging of Brain Activity.
    Kyweriga M; Sun J; Wang S; Kline R; Mohajerani MH
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration.
    Mascott CR; Sol JC; Bousquet P; Lagarrigue J; Lazorthes Y; Lauwers-Cances V
    Neurosurgery; 2006 Jul; 59(1 Suppl 1):ONS146-56; discussion ONS146-56. PubMed ID: 16888546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.