These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25855808)

  • 1. Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification.
    Kim J; Xiao H; Koh J; Wang Y; Bonanno JB; Thomas K; Babbitt PC; Brown S; Lee YS; Almo SC
    Nucleic Acids Res; 2015 May; 43(9):4602-13. PubMed ID: 25855808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function.
    Kim J; Xiao H; Bonanno JB; Kalyanaraman C; Brown S; Tang X; Al-Obaidi NF; Patskovsky Y; Babbitt PC; Jacobson MP; Lee YS; Almo SC
    Nature; 2013 Jun; 498(7452):123-6. PubMed ID: 23676670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel tRNA wobble uridine modifying activity in the biosynthesis of 5-methoxyuridine.
    Ryu H; Grove TL; Almo SC; Kim J
    Nucleic Acids Res; 2018 Sep; 46(17):9160-9169. PubMed ID: 29982645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural snapshots of CmoB in various states during wobble uridine modification of tRNA.
    Jeong S; Kim J
    Biochem Biophys Res Commun; 2021 Jan; 534():604-609. PubMed ID: 33213836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC.
    Kim J; Almo SC
    BMC Struct Biol; 2013 Apr; 13():5. PubMed ID: 23617613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase.
    Zhou M; Long T; Fang ZP; Zhou XL; Liu RJ; Wang ED
    RNA Biol; 2015; 12(8):900-11. PubMed ID: 26106808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase.
    Kim J; Malashkevich V; Roday S; Lisbin M; Schramm VL; Almo SC
    Biochemistry; 2006 May; 45(20):6407-16. PubMed ID: 16700551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical insights into the 2'-O-methylation of pyrimidines 34 in tRNA.
    Pang P; Deng X; Wang Z; Xie W
    FEBS J; 2017 Jul; 284(14):2251-2263. PubMed ID: 28544464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of tRNA Recognition by the Radical SAM Enzyme RlmN.
    Fitzsimmons CM; Fujimori DG
    PLoS One; 2016; 11(11):e0167298. PubMed ID: 27902775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine.
    Koh CS; Madireddy R; Beane TJ; Zamore PD; Korostelev AA
    Sci Rep; 2017 Apr; 7(1):969. PubMed ID: 28428565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA.
    Yan F; LaMarre JM; Röhrich R; Wiesner J; Jomaa H; Mankin AS; Fujimori DG
    J Am Chem Soc; 2010 Mar; 132(11):3953-64. PubMed ID: 20184321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis.
    Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF
    Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-L-methionine methyl synthase RlmN trapped by mutagenesis.
    McCusker KP; Medzihradszky KF; Shiver AL; Nichols RJ; Yan F; Maltby DA; Gross CA; Fujimori DG
    J Am Chem Soc; 2012 Oct; 134(43):18074-81. PubMed ID: 23088750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid residues of the Escherichia coli tRNA(m5U54)methyltransferase (TrmA) critical for stability, covalent binding of tRNA and enzymatic activity.
    Urbonavicius J; Jäger G; Björk GR
    Nucleic Acids Res; 2007; 35(10):3297-305. PubMed ID: 17459887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Analysis of tRNA Methyltransferases.
    Hou YM; Masuda I
    Methods Enzymol; 2015; 560():91-116. PubMed ID: 26253967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase.
    Vranken C; Fin A; Tufar P; Hofkens J; Burkart MD; Tor Y
    Org Biomol Chem; 2016 Jul; 14(26):6189-92. PubMed ID: 27270873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A QM/MM study of the catalytic mechanism of SAM methyltransferase RlmN from Escherichia coli.
    Zhao C; Dong L; Liu Y
    Proteins; 2017 Nov; 85(11):1967-1974. PubMed ID: 28643349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB.
    Esakova OA; Grove TL; Yennawar NH; Arcinas AJ; Wang B; Krebs C; Almo SC; Booker SJ
    Nature; 2021 Sep; 597(7877):566-570. PubMed ID: 34526715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural model of the M7G46 Methyltransferase TrmB in complex with tRNA.
    Blersch KF; Burchert JP; August SC; Welp L; Neumann P; Köster S; Urlaub H; Ficner R
    RNA Biol; 2021 Dec; 18(12):2466-2479. PubMed ID: 34006170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-mediated changes in conformational dynamics of NpmA: implications for ribosomal interactions.
    Husain N; Tulsian NK; Chien WL; Suresh S; Anand GS; Sivaraman J
    Sci Rep; 2016 Nov; 6():37061. PubMed ID: 27845431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.