These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Yield of 6,000 proteins by 1D nLC-MS/MS without pre-fractionation. Anagnostopoulos AK; Stravopodis DJ; Tsangaris GT J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1047():92-96. PubMed ID: 27605470 [TBL] [Abstract][Full Text] [Related]
3. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278 [TBL] [Abstract][Full Text] [Related]
4. Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Pirmoradian M; Budamgunta H; Chingin K; Zhang B; Astorga-Wells J; Zubarev RA Mol Cell Proteomics; 2013 Nov; 12(11):3330-8. PubMed ID: 23878402 [TBL] [Abstract][Full Text] [Related]
5. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p. Bailey UM; Schulz BL J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304 [TBL] [Abstract][Full Text] [Related]
6. A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day. Hosp F; Scheltema RA; Eberl HC; Kulak NA; Keilhauer EC; Mayr K; Mann M Mol Cell Proteomics; 2015 Jul; 14(7):2030-41. PubMed ID: 25887394 [TBL] [Abstract][Full Text] [Related]
7. Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation. Lin D; Li J; Slebos RJ; Liebler DC J Proteome Res; 2010 Oct; 9(10):5461-72. PubMed ID: 20731415 [TBL] [Abstract][Full Text] [Related]
8. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry. Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439 [TBL] [Abstract][Full Text] [Related]
9. Performance metrics for liquid chromatography-tandem mass spectrometry systems in proteomics analyses. Rudnick PA; Clauser KR; Kilpatrick LE; Tchekhovskoi DV; Neta P; Blonder N; Billheimer DD; Blackman RK; Bunk DM; Cardasis HL; Ham AJ; Jaffe JD; Kinsinger CR; Mesri M; Neubert TA; Schilling B; Tabb DL; Tegeler TJ; Vega-Montoto L; Variyath AM; Wang M; Wang P; Whiteaker JR; Zimmerman LJ; Carr SA; Fisher SJ; Gibson BW; Paulovich AG; Regnier FE; Rodriguez H; Spiegelman C; Tempst P; Liebler DC; Stein SE Mol Cell Proteomics; 2010 Feb; 9(2):225-41. PubMed ID: 19837981 [TBL] [Abstract][Full Text] [Related]
10. Comparison of protein and peptide fractionation approaches in protein identification and quantification from Saccharomyces cerevisiae. Deng L; Handler DCL; Multari DH; Haynes PA J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1162():122453. PubMed ID: 33279813 [TBL] [Abstract][Full Text] [Related]
11. Nanospray FAIMS fractionation provides significant increases in proteome coverage of unfractionated complex protein digests. Swearingen KE; Hoopmann MR; Johnson RS; Saleem RA; Aitchison JD; Moritz RL Mol Cell Proteomics; 2012 Apr; 11(4):M111.014985. PubMed ID: 22186714 [TBL] [Abstract][Full Text] [Related]
12. Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms. Zhou F; Sikorski TW; Ficarro SB; Webber JT; Marto JA Anal Chem; 2011 Sep; 83(18):6996-7005. PubMed ID: 21851055 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of meter-long monolithic columns for selected reaction monitoring mass spectrometry. Ohtani Y; Aburaya S; Minakuchi H; Miura N; Aoki W; Ueda M J Biosci Bioeng; 2019 Sep; 128(3):379-383. PubMed ID: 30956101 [TBL] [Abstract][Full Text] [Related]
14. Online 2D-LC-MS/MS Platform for Analysis of Glycated Proteome. Zhang L; Liu CW; Zhang Q Anal Chem; 2018 Jan; 90(2):1081-1086. PubMed ID: 29281256 [TBL] [Abstract][Full Text] [Related]
15. Coupling Capillary Zone Electrophoresis to a Q Exactive HF Mass Spectrometer for Top-down Proteomics: 580 Proteoform Identifications from Yeast. Zhao Y; Sun L; Zhu G; Dovichi NJ J Proteome Res; 2016 Oct; 15(10):3679-3685. PubMed ID: 27490796 [TBL] [Abstract][Full Text] [Related]
16. Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome. Wang H; Yang Y; Li Y; Bai B; Wang X; Tan H; Liu T; Beach TG; Peng J; Wu Z J Proteome Res; 2015 Feb; 14(2):829-38. PubMed ID: 25455107 [TBL] [Abstract][Full Text] [Related]
17. The Negative Mode Proteome with Activated Ion Negative Electron Transfer Dissociation (AI-NETD). Riley NM; Rush MJ; Rose CM; Richards AL; Kwiecien NW; Bailey DJ; Hebert AS; Westphall MS; Coon JJ Mol Cell Proteomics; 2015 Oct; 14(10):2644-60. PubMed ID: 26193884 [TBL] [Abstract][Full Text] [Related]
19. Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe. Tian R; Li L; Tang W; Liu H; Ye M; Zhao ZK; Zou H Proteomics; 2008 Aug; 8(15):3094-104. PubMed ID: 18615431 [TBL] [Abstract][Full Text] [Related]
20. Bridged Hybrid Monolithic Column Coupled to High-Resolution Mass Spectrometry for Top-Down Proteomics. Liang Y; Jin Y; Wu Z; Tucholski T; Brown KA; Zhang L; Zhang Y; Ge Y Anal Chem; 2019 Feb; 91(3):1743-1747. PubMed ID: 30668094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]