These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25856208)

  • 1. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches.
    Sander M; Hofstetter TB; Gorski CA
    Environ Sci Technol; 2015 May; 49(10):5862-78. PubMed ID: 25856208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites.
    Gorski CA; Aeschbacher M; Soltermann D; Voegelin A; Baeyens B; Marques Fernandes M; Hofstetter TB; Sander M
    Environ Sci Technol; 2012 Sep; 46(17):9360-8. PubMed ID: 22827605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.
    Gorski CA; Klüpfel L; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2012 Sep; 46(17):9369-77. PubMed ID: 22827558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.
    Gorski CA; Klüpfel LE; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2013; 47(23):13477-85. PubMed ID: 24219773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids.
    Aeschbacher M; Vergari D; Schwarzenbach RP; Sander M
    Environ Sci Technol; 2011 Oct; 45(19):8385-94. PubMed ID: 21823669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.
    Liu G; Qiu S; Liu B; Pu Y; Gao Z; Wang J; Jin R; Zhou J
    Sci Rep; 2017 Mar; 7():45354. PubMed ID: 28358048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.
    Fan D; Bradley MJ; Hinkle AW; Johnson RL; Tratnyek PG
    Environ Sci Technol; 2016 Feb; 50(4):1868-76. PubMed ID: 26814150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.
    Neumann A; Olson TL; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6969-77. PubMed ID: 23517074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Transfer between Electrically Conductive Minerals and Quinones.
    Taran O
    Front Chem; 2017; 5():49. PubMed ID: 28752088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electron transfer and enhanced electrocatalytic activity of hemoglobin at iron-rich clay modified electrodes.
    Charradi K; Forano C; Prevot V; Ben Haj Amara A; Mousty C
    Langmuir; 2009 Sep; 25(17):10376-83. PubMed ID: 19518082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing Abiotic Reduction of NAD
    Weber JM; Henderson BL; LaRowe DE; Goldman AD; Perl SM; Billings K; Barge LM
    Astrobiology; 2022 Jan; 22(1):25-34. PubMed ID: 34591607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical evidences for promoted interfacial reactions: the role of Fe(II) adsorbed onto gamma-Al2O3 and TiO2 in reductive transformation of 2-nitrophenol.
    Li FB; Tao L; Feng CH; Li XZ; Sun KW
    Environ Sci Technol; 2009 May; 43(10):3656-61. PubMed ID: 19544869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.
    Soltermann D; Marques Fernandes M; Baeyens B; Dähn R; Joshi PA; Scheinost AC; Gorski CA
    Environ Sci Technol; 2014; 48(15):8688-97. PubMed ID: 24930689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox Oscillations Activate Thermodynamically Stable Iron Minerals for Enhanced Reactive Oxygen Species Production.
    Zhao G; Tan M; Wu B; Zheng X; Xiong R; Chen B; Kappler A; Chu C
    Environ Sci Technol; 2023 Jun; 57(23):8628-8637. PubMed ID: 37254500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.
    Chen N; Fang G; Zhou D; Gao J
    Chemosphere; 2016 Dec; 165():52-58. PubMed ID: 27639077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers.
    Gualtieri AF; Andreozzi GB; Tomatis M; Turci F
    Free Radic Biol Med; 2019 Mar; 133():21-37. PubMed ID: 30071299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.