These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25856208)

  • 21. Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review.
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Apr; 197():803-816. PubMed ID: 29407844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Mar; 49(6):3557-65. PubMed ID: 25723896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay.
    Sorensen KC; Stucki JW; Warner RE; Wagner ED; Plewa MJ
    Environ Mol Mutagen; 2005 Oct; 46(3):174-81. PubMed ID: 15920753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced Iron-Containing Clay Minerals as Antibacterial Agents.
    Wang X; Dong H; Zeng Q; Xia Q; Zhang L; Zhou Z
    Environ Sci Technol; 2017 Jul; 51(13):7639-7647. PubMed ID: 28570809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.
    Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y
    Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.
    Gorski CA; Edwards R; Sander M; Hofstetter TB; Stewart SM
    Environ Sci Technol; 2016 Aug; 50(16):8538-47. PubMed ID: 27427506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Interaction of clay minerals with microorganisms: a review of experimental data].
    Naĭmark EB; Eroshchev-Shak VA; Chizhikova NP; Kompantseva EI
    Zh Obshch Biol; 2009; 70(2):155-67. PubMed ID: 19425352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mediated electron transfer between Fe(II) adsorbed onto hydrous ferric oxide and a working electrode.
    Klein AR; Silvester E; Hogan CF
    Environ Sci Technol; 2014 Sep; 48(18):10835-42. PubMed ID: 25157830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical investigation of immobilized hemoglobin: redox chemistry and enzymatic catalysis.
    Liu HH; Zou GL
    J Biochem Biophys Methods; 2006 Aug; 68(2):87-99. PubMed ID: 16762418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.
    Neumann A; Wu L; Li W; Beard BL; Johnson CM; Rosso KM; Frierdich AJ; Scherer MM
    Environ Sci Technol; 2015 Mar; 49(5):2786-95. PubMed ID: 25671351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of clay minerals on the reduction of Cr6+ by citric acid.
    Lan Y; Li C; Mao J; Sun J
    Chemosphere; 2008 Mar; 71(4):781-7. PubMed ID: 18022670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.
    Bennett T; Niroomand H; Pamu R; Ivanov I; Mukherjee D; Khomami B
    Phys Chem Chem Phys; 2016 Mar; 18(12):8512-21. PubMed ID: 26941212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decreased Electron Transfer between Cr(VI) and AH2DS in the Presence of Goethite.
    Tomaszewski EJ; Ginder-Vogel M
    J Environ Qual; 2018 Jan; 47(1):139-146. PubMed ID: 29415106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.
    Zeng Z; Tice MM
    Astrobiology; 2018 Jan; 18(1):28-36. PubMed ID: 29265883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and acid-mobilization study for typical iron-bearing clay mineral.
    Wang Z; Li R; Cui L; Fu H; Lin J; Chen J
    J Environ Sci (China); 2018 Sep; 71():222-232. PubMed ID: 30195681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical properties of interstrand cross-linked DNA duplexes labeled with Nile blue.
    Mie Y; Kowata K; Kojima N; Komatsu Y
    Langmuir; 2012 Dec; 28(49):17211-6. PubMed ID: 23153070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.