These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 25856305)
1. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents. Zhigaltsev IV; Tam YK; Leung AK; Cullis PR J Liposome Res; 2016; 26(2):96-102. PubMed ID: 25856305 [TBL] [Abstract][Full Text] [Related]
2. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499 [TBL] [Abstract][Full Text] [Related]
3. Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid composition and PEG-lipid content. Cheung CCL; Al-Jamal WT Int J Pharm; 2019 Jul; 566():687-696. PubMed ID: 31212051 [TBL] [Abstract][Full Text] [Related]
4. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes. Ramezani M; Khoshhamdam M; Dehshahri A; Malaekeh-Nikouei B Colloids Surf B Biointerfaces; 2009 Aug; 72(1):1-5. PubMed ID: 19395245 [TBL] [Abstract][Full Text] [Related]
6. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. Chen S; Tam YY; Lin PJ; Leung AK; Tam YK; Cullis PR J Control Release; 2014 Dec; 196():106-12. PubMed ID: 25285610 [TBL] [Abstract][Full Text] [Related]
7. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626 [TBL] [Abstract][Full Text] [Related]
8. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
9. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography. Zhang J; Haas RM; Leone AM Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783 [TBL] [Abstract][Full Text] [Related]
10. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
11. Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: studies with human gastro-entero-pancreatic ectopic tumor models. Gabizon A; Amitay Y; Tzemach D; Gorin J; Shmeeda H; Zalipsky S J Control Release; 2012 Jun; 160(2):245-53. PubMed ID: 22134116 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. Dong YD; Tchung E; Nowell C; Kaga S; Leong N; Mehta D; Kaminskas LM; Boyd BJ J Liposome Res; 2019 Mar; 29(1):1-9. PubMed ID: 29020849 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393 [TBL] [Abstract][Full Text] [Related]
14. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation. Hervella P; Parra E; Needham D Eur J Pharm Biopharm; 2016 May; 102():64-76. PubMed ID: 26925504 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics. Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715 [TBL] [Abstract][Full Text] [Related]
16. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Garbuzenko O; Barenholz Y; Priev A Chem Phys Lipids; 2005 Jun; 135(2):117-29. PubMed ID: 15921973 [TBL] [Abstract][Full Text] [Related]
17. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Barauskas J; Cervin C; Jankunec M; Spandyreva M; Ribokaite K; Tiberg F; Johnsson M Int J Pharm; 2010 May; 391(1-2):284-91. PubMed ID: 20214966 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution. Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567 [TBL] [Abstract][Full Text] [Related]
19. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Mijajlovic M; Wright D; Zivkovic V; Bi JX; Biggs MJ Colloids Surf B Biointerfaces; 2013 Apr; 104():276-81. PubMed ID: 23334181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]