BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 25856489)

  • 1. Tools for probing local circuits: high-density silicon probes combined with optogenetics.
    Buzsáki G; Stark E; Berényi A; Khodagholy D; Kipke DR; Yoon E; Wise KD
    Neuron; 2015 Apr; 86(1):92-105. PubMed ID: 25856489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat.
    Schjetnan AG; Luczak A
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.
    Royer S; Zemelman BV; Barbic M; Losonczy A; Buzsáki G; Magee JC
    Eur J Neurosci; 2010 Jun; 31(12):2279-91. PubMed ID: 20529127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisite Electrophysiology Recordings in Mice to Study Cross-Regional Communication During Anxiety.
    Harris AZ; Golder D; Likhtik E
    Curr Protoc Neurosci; 2017 Jul; 80():8.40.1-8.40.21. PubMed ID: 28678397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validating silicon polytrodes with paired juxtacellular recordings: method and dataset.
    Neto JP; Lopes G; Frazão J; Nogueira J; Lacerda P; Baião P; Aarts A; Andrei A; Musa S; Fortunato E; Barquinha P; Kampff AR
    J Neurophysiol; 2016 Aug; 116(2):892-903. PubMed ID: 27306671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.
    Fiáth R; Beregszászi P; Horváth D; Wittner L; Aarts AA; Ruther P; Neves HP; Bokor H; Acsády L; Ulbert I
    J Neurophysiol; 2016 Nov; 116(5):2312-2330. PubMed ID: 27535370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale recording of neuronal ensembles.
    Buzsáki G
    Nat Neurosci; 2004 May; 7(5):446-51. PubMed ID: 15114356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Optical Interrogation of Neural Circuits.
    Emiliani V; Cohen AE; Deisseroth K; Häusser M
    J Neurosci; 2015 Oct; 35(41):13917-26. PubMed ID: 26468193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode pooling can boost the yield of extracellular recordings with switchable silicon probes.
    Lee KH; Ni YL; Colonell J; Karsh B; Putzeys J; Pachitariu M; Harris TD; Meister M
    Nat Commun; 2021 Sep; 12(1):5245. PubMed ID: 34475396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity.
    Cardin JA
    J Physiol Paris; 2012; 106(3-4):104-11. PubMed ID: 21958624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation transgenic mice for optogenetic analysis of neural circuits.
    Asrican B; Augustine GJ; Berglund K; Chen S; Chow N; Deisseroth K; Feng G; Gloss B; Hira R; Hoffmann C; Kasai H; Katarya M; Kim J; Kudolo J; Lee LM; Lo SQ; Mancuso J; Matsuzaki M; Nakajima R; Qiu L; Tan G; Tang Y; Ting JT; Tsuda S; Wen L; Zhang X; Zhao S
    Front Neural Circuits; 2013; 7():160. PubMed ID: 24324405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale recording of neurons by movable silicon probes in behaving rodents.
    Vandecasteele M; M S; Royer S; Belluscio M; Berényi A; Diba K; Fujisawa S; Grosmark A; Mao D; Mizuseki K; Patel J; Stark E; Sullivan D; Watson B; Buzsáki G
    J Vis Exp; 2012 Mar; (61):e3568. PubMed ID: 22415550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution optogenetics in space and time.
    Fernandez-Ruiz A; Oliva A; Chang H
    Trends Neurosci; 2022 Nov; 45(11):854-864. PubMed ID: 36192264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional monitoring of spiking networks in acute brain slices.
    Egert U; Heck D; Aertsen A
    Exp Brain Res; 2002 Jan; 142(2):268-74. PubMed ID: 11807580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical analysis of large-scale neuronal recording data.
    Reed JL; Kaas JH
    Neural Netw; 2010 Aug; 23(6):673-84. PubMed ID: 20472395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes.
    Kinsky NR; Vöröslakos M; Ruiz JRL; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.