BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25856634)

  • 21. Intracellular virus DNA distribution and the acquisition of the nucleoprotein core during African swine fever virus particle assembly: ultrastructural in situ hybridisation and DNase-gold labelling.
    Brookes SM; Hyatt AD; Wise T; Parkhouse RM
    Virology; 1998 Sep; 249(1):175-88. PubMed ID: 9740789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apigenin inhibits African swine fever virus infection in vitro.
    Hakobyan A; Arabyan E; Avetisyan A; Abroyan L; Hakobyan L; Zakaryan H
    Arch Virol; 2016 Dec; 161(12):3445-3453. PubMed ID: 27638776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis.
    Vallée I; Tait SW; Powell PP
    J Virol; 2001 Nov; 75(21):10372-82. PubMed ID: 11581405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. African swine fever virus replication and genomics.
    Dixon LK; Chapman DA; Netherton CL; Upton C
    Virus Res; 2013 Apr; 173(1):3-14. PubMed ID: 23142553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.
    Galindo I; Cuesta-Geijo MA; Hlavova K; Muñoz-Moreno R; Barrado-Gil L; Dominguez J; Alonso C
    Virus Res; 2015 Mar; 200():45-55. PubMed ID: 25662020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and verification of a highly reliable Linear-After-The-Exponential PCR (LATE-PCR) assay for the detection of African swine fever virus.
    Ronish B; Hakhverdyan M; Ståhl K; Gallardo C; Fernandez-Pinero J; Belák S; Leblanc N; Wangh L
    J Virol Methods; 2011 Mar; 172(1-2):8-15. PubMed ID: 21167207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aggresome formation is regulated by RanBPM through an interaction with HDAC6.
    Salemi LM; Almawi AW; Lefebvre KJ; Schild-Poulter C
    Biol Open; 2014 May; 3(6):418-30. PubMed ID: 24795145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence.
    Portugal R; Leitão A; Martins C
    Arch Virol; 2009; 154(9):1441-50. PubMed ID: 19657705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin.
    Jouvenet N; Monaghan P; Way M; Wileman T
    J Virol; 2004 Aug; 78(15):7990-8001. PubMed ID: 15254171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.
    Coelho J; Martins C; Ferreira F; Leitão A
    Virology; 2015 Jan; 474():82-93. PubMed ID: 25463606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome.
    Krug PW; Holinka LG; O'Donnell V; Reese B; Sanford B; Fernandez-Sainz I; Gladue DP; Arzt J; Rodriguez L; Risatti GR; Borca MV
    J Virol; 2015 Feb; 89(4):2324-32. PubMed ID: 25505073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apoptosis induced in an early step of African swine fever virus entry into vero cells does not require virus replication.
    Carrascosa AL; Bustos MJ; Nogal ML; González de Buitrago G; Revilla Y
    Virology; 2002 Mar; 294(2):372-82. PubMed ID: 12009879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and utility of innate immune system evasion mechanisms of ASFV.
    Correia S; Ventura S; Parkhouse RM
    Virus Res; 2013 Apr; 173(1):87-100. PubMed ID: 23165138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ubiquitin-like modifier FAT10 interacts with HDAC6 and localizes to aggresomes under proteasome inhibition.
    Kalveram B; Schmidtke G; Groettrup M
    J Cell Sci; 2008 Dec; 121(Pt 24):4079-88. PubMed ID: 19033385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. No evidence of African swine fever virus replication in hard ticks.
    de Carvalho Ferreira HC; Tudela Zúquete S; Wijnveld M; Weesendorp E; Jongejan F; Stegeman A; Loeffen WL
    Ticks Tick Borne Dis; 2014 Sep; 5(5):582-9. PubMed ID: 24980962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. African swine fever virus infection disrupts centrosome assembly and function.
    Jouvenet N; Wileman T
    J Gen Virol; 2005 Mar; 86(Pt 3):589-594. PubMed ID: 15722518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. African swine fever virus p37 structural protein is localized in nuclear foci containing the viral DNA at early post-infection times.
    Eulálio A; Nunes-Correia I; Salas J; Salas ML; Simões S; Pedroso de Lima MC
    Virus Res; 2007 Dec; 130(1-2):18-27. PubMed ID: 17580096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association of African swine fever virus with the cytoskeleton.
    Carvalho ZG; De Matos AP; Rodrigues-Pousada C
    Virus Res; 1988 Sep; 11(2):175-92. PubMed ID: 3201825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. African swine fever virus morphogenesis.
    Salas ML; Andrés G
    Virus Res; 2013 Apr; 173(1):29-41. PubMed ID: 23059353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence.
    Neilan JG; Lu Z; Kutish GF; Zsak L; Burrage TG; Borca MV; Carrillo C; Rock DL
    Virology; 1997 Apr; 230(2):252-64. PubMed ID: 9143281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.