These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25857275)

  • 1. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress.
    Mustafa G; Sakata K; Hossain Z; Komatsu S
    J Proteomics; 2015 Jun; 122():100-18. PubMed ID: 25857275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress.
    Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2016 Oct; 148():113-25. PubMed ID: 27469891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles.
    Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2015 Oct; 128():280-97. PubMed ID: 26306862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.
    Yin X; Sakata K; Nanjo Y; Komatsu S
    J Proteomics; 2014 Jun; 106():1-16. PubMed ID: 24732726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress.
    Hashimoto T; Mustafa G; Nishiuchi T; Komatsu S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32075105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress.
    Kamal AH; Rashid H; Sakata K; Komatsu S
    J Proteomics; 2015 Jan; 112():1-13. PubMed ID: 25201076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings.
    Mustafa G; Hasan M; Yamaguchi H; Hitachi K; Tsuchida K; Komatsu S
    J Proteomics; 2020 Jul; 224():103833. PubMed ID: 32450145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress.
    Li X; Rehman SU; Yamaguchi H; Hitachi K; Tsuchida K; Yamaguchi T; Sunohara Y; Matsumoto H; Komatsu S
    J Proteomics; 2018 Jun; 181():238-248. PubMed ID: 29704570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques.
    Nanjo Y; Skultety L; Ashraf Y; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):3989-4002. PubMed ID: 20540568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic analysis of post-flooding recovery in soybean root exposed to aluminum oxide nanoparticles.
    Yasmeen F; Raja NI; Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2016 Jun; 143():136-150. PubMed ID: 27079982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of proteins in soybean roots under flooding and drought stresses.
    Oh M; Komatsu S
    J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress.
    Yin X; Komatsu S
    J Proteomics; 2015 Apr; 119():183-95. PubMed ID: 25724727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress.
    Hossain Z; Mustafa G; Sakata K; Komatsu S
    J Hazard Mater; 2016 Mar; 304():291-305. PubMed ID: 26561753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of soybean root including hypocotyl during recovery from drought stress.
    Khan MN; Komatsu S
    J Proteomics; 2016 Jul; 144():39-50. PubMed ID: 27292084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of flooding-responsive proteins localized in the nucleus of soybean root tips.
    Komatsu S; Hiraga S; Nouri MZ
    Mol Biol Rep; 2014 Feb; 41(2):1127-39. PubMed ID: 24385303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.