BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 25857335)

  • 1. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections.
    Kolodziejczak M; Béchade C; Gervasi N; Irinopoulou T; Banas SM; Cordier C; Rebsam A; Roumier A; Maroteaux L
    ACS Chem Neurosci; 2015 Jul; 6(7):1219-30. PubMed ID: 25857335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal pentraxins mediate silent synapse conversion in the developing visual system.
    Koch SM; Ullian EM
    J Neurosci; 2010 Apr; 30(15):5404-14. PubMed ID: 20392962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal pentraxins mediate synaptic refinement in the developing visual system.
    Bjartmar L; Huberman AD; Ullian EM; Rentería RC; Liu X; Xu W; Prezioso J; Susman MW; Stellwagen D; Stokes CC; Cho R; Worley P; Malenka RC; Ball S; Peachey NS; Copenhagen D; Chapman B; Nakamoto M; Barres BA; Perin MS
    J Neurosci; 2006 Jun; 26(23):6269-81. PubMed ID: 16763034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sexual dimorphism of microglia and synapses during mouse postnatal development.
    Weinhard L; Neniskyte U; Vadisiute A; di Bartolomei G; Aygün N; Riviere L; Zonfrillo F; Dymecki S; Gross C
    Dev Neurobiol; 2018 Jun; 78(6):618-626. PubMed ID: 29239126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Maturation and plasticity of visual system: neurogenesis, synaptogenesis, and myelogenesis. Report I. Retina and retinogeniculate projections].
    Zueva MV
    Vestn Oftalmol; 2012; 128(3):37-41. PubMed ID: 23120924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse.
    Hooks BM; Chen C
    Neuron; 2006 Oct; 52(2):281-91. PubMed ID: 17046691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapse elimination in the central nervous system.
    Kano M; Hashimoto K
    Curr Opin Neurobiol; 2009 Apr; 19(2):154-61. PubMed ID: 19481442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism.
    Cheadle L; Rivera SA; Phelps JS; Ennis KA; Stevens B; Burkly LC; Lee WA; Greenberg ME
    Neuron; 2020 Nov; 108(3):451-468.e9. PubMed ID: 32931754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators.
    Assali A; Gaspar P; Rebsam A
    Semin Cell Dev Biol; 2014 Nov; 35():136-46. PubMed ID: 25152335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic pruning by microglia is necessary for normal brain development.
    Paolicelli RC; Bolasco G; Pagani F; Maggi L; Scianni M; Panzanelli P; Giustetto M; Ferreira TA; Guiducci E; Dumas L; Ragozzino D; Gross CT
    Science; 2011 Sep; 333(6048):1456-8. PubMed ID: 21778362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina.
    Wang X; Zhao L; Zhang J; Fariss RN; Ma W; Kretschmer F; Wang M; Qian HH; Badea TC; Diamond JS; Gan WB; Roger JE; Wong WT
    J Neurosci; 2016 Mar; 36(9):2827-42. PubMed ID: 26937019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory "Barrel" cortex.
    Arnoux I; Hoshiko M; Mandavy L; Avignone E; Yamamoto N; Audinat E
    Glia; 2013 Oct; 61(10):1582-94. PubMed ID: 23893820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal waves: implications for synaptic learning rules during development.
    Butts DA
    Neuroscientist; 2002 Jun; 8(3):243-53. PubMed ID: 12061504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of competitive interactions in the postnatal development of X and Y retinogeniculate axons.
    Garraghty PE; Sur M; Sherman SM
    J Comp Neurol; 1986 Sep; 251(2):216-39. PubMed ID: 3782499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation.
    Pont-Lezica L; Beumer W; Colasse S; Drexhage H; Versnel M; Bessis A
    Eur J Neurosci; 2014 May; 39(10):1551-7. PubMed ID: 24593277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental remodeling of the retinogeniculate synapse.
    Chen C; Regehr WG
    Neuron; 2000 Dec; 28(3):955-66. PubMed ID: 11163279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient expression of synaptic zinc during development of uncrossed retinogeniculate projections.
    Land PW; Shamalla-Hannah L
    J Comp Neurol; 2001 May; 433(4):515-25. PubMed ID: 11304715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets.
    Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M
    J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the role of metabotropic glutamate receptor subtype 1 in developmental refinement of neuronal connectivity between the cerebellum and the sensory thalamus.
    Narushima M
    Neurosci Res; 2018 Apr; 129():24-31. PubMed ID: 28711710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.