These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 25857574)

  • 1. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells.
    Liu Z; Dai S; Bones J; Ray S; Cha S; Karger BL; Li JJ; Wilson L; Hinckle G; Rossomando A
    Biotechnol Prog; 2015; 31(4):1026-38. PubMed ID: 25857574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects.
    Wingens M; Gätgens J; Schmidt A; Albaum SP; Büntemeyer H; Noll T; Hoffrogge R
    J Biotechnol; 2015 May; 201():86-97. PubMed ID: 25612871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells.
    Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ
    Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrahydrofolate increases suspension growth of dihydrofolate reductase-deficient chinese hamster ovary DG44 cells in chemically defined media.
    Kim BG; Park HW
    Biotechnol Prog; 2016 Nov; 32(6):1539-1546. PubMed ID: 27578320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures.
    Park JH; Jin JH; Ji IJ; An HJ; Kim JW; Lee GM
    Biotechnol Bioeng; 2017 Oct; 114(10):2267-2278. PubMed ID: 28627725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates.
    Kim JY; Kim YG; Han YK; Choi HS; Kim YH; Lee GM
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1917-28. PubMed ID: 21286710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture.
    Fan Y; Jimenez Del Val I; Müller C; Lund AM; Sen JW; Rasmussen SK; Kontoravdi C; Baycin-Hizal D; Betenbaugh MJ; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Oct; 112(10):2172-84. PubMed ID: 25899530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases.
    Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A
    J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in efficiency of media utilization for recombinant protein production in Chinese hamster ovary culture through dilution.
    Thombre S; Gadgil M
    Biotechnol Appl Biochem; 2011; 58(1):25-31. PubMed ID: 21446956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic profiling of a high-producing Chinese hamster ovary cell culture.
    Carlage T; Hincapie M; Zang L; Lyubarskaya Y; Madden H; Mhatre R; Hancock WS
    Anal Chem; 2009 Sep; 81(17):7357-62. PubMed ID: 19663468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.
    Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from the Hamster: Cricetulus griseus Tissue and CHO Cell Line Proteome Comparison.
    Heffner KM; Hizal DB; Yerganian GS; Kumar A; Can Ö; O'Meally R; Cole R; Chaerkady R; Wu H; Bowen MA; Betenbaugh MJ
    J Proteome Res; 2017 Oct; 16(10):3672-3687. PubMed ID: 28876938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system.
    Huang EP; Marquis CP; Gray PP
    Biotechnol Bioeng; 2004 Nov; 88(4):437-50. PubMed ID: 15459913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein reference mapping of dihydrofolate reductase-deficient CHO DG44 cell lines using 2-dimensional electrophoresis.
    Lee JS; Park HJ; Kim YH; Lee GM
    Proteomics; 2010 Jun; 10(12):2292-302. PubMed ID: 20391528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic differences in recombinant CHO cells producing two similar antibody fragments.
    Sommeregger W; Mayrhofer P; Steinfellner W; Reinhart D; Henry M; Clynes M; Meleady P; Kunert R
    Biotechnol Bioeng; 2016 Sep; 113(9):1902-12. PubMed ID: 26913574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases.
    Carlage T; Kshirsagar R; Zang L; Janakiraman V; Hincapie M; Lyubarskaya Y; Weiskopf A; Hancock WS
    Biotechnol Prog; 2012; 28(3):814-23. PubMed ID: 22556165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of CHO cell lines to increased pCO2 at normal (37 °C) and reduced (33 °C) culture temperatures.
    Darja O; Stanislav M; Saša S; Andrej F; Lea B; Branka J
    J Biotechnol; 2016 Feb; 219():98-109. PubMed ID: 26707809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control.
    Albrecht S; Kaisermayer C; Reinhart D; Ambrose M; Kunert R; Lindeberg A; Bones J
    Anal Bioanal Chem; 2018 May; 410(13):3197-3207. PubMed ID: 29607450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines.
    Doolan P; Meleady P; Barron N; Henry M; Gallagher R; Gammell P; Melville M; Sinacore M; McCarthy K; Leonard M; Charlebois T; Clynes M
    Biotechnol Bioeng; 2010 May; 106(1):42-56. PubMed ID: 20091739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.