BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 25857664)

  • 1. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance.
    Bai C; Capell T; Berman J; Medina V; Sandmann G; Christou P; Zhu C
    Plant Biotechnol J; 2016 Jan; 14(1):195-205. PubMed ID: 25857664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity.
    Bai C; Berman J; Farre G; Capell T; Sandmann G; Christou P; Zhu C
    Transgenic Res; 2017 Feb; 26(1):13-23. PubMed ID: 27567632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why is golden rice golden (yellow) instead of red?
    Schaub P; Al-Babili S; Drake R; Beyer P
    Plant Physiol; 2005 May; 138(1):441-50. PubMed ID: 15821145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis.
    Burkhardt PK; Beyer P; Wünn J; Klöti A; Armstrong GA; Schledz M; von Lintig J; Potrykus I
    Plant J; 1997 May; 11(5):1071-8. PubMed ID: 9193076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation.
    Bai C; Rivera SM; Medina V; Alves R; Vilaprinyo E; Sorribas A; Canela R; Capell T; Sandmann G; Christou P; Zhu C
    Plant J; 2014 Feb; 77(3):464-75. PubMed ID: 24267591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm.
    Ha SH; Liang YS; Jung H; Ahn MJ; Suh SC; Kweon SJ; Kim DH; Kim YM; Kim JK
    Plant Biotechnol J; 2010 Oct; 8(8):928-38. PubMed ID: 20649940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm.
    Ha SH; Kim JK; Jeong YS; You MK; Lim SH; Kim JK
    Metab Eng; 2019 Mar; 52():178-189. PubMed ID: 30503392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multifocal approach towards understanding the complexities of carotenoid biosynthesis and accumulation in rice grains.
    Chettry U; Chrungoo NK
    Brief Funct Genomics; 2020 Jul; 19(4):324-335. PubMed ID: 32240289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice carotenoid biofortification and yield improvement conferred by endosperm-specific overexpression of
    Li Z; Gao J; Wang B; Xu J; Fu X; Han H; Wang L; Zhang W; Deng Y; Wang Y; Gong Z; Tian Y; Peng R; Yao Q
    Front Plant Sci; 2022; 13():951605. PubMed ID: 35909772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis ORANGE (AtOR) gene promotes carotenoid accumulation in transgenic corn hybrids derived from parental lines with limited carotenoid pools.
    Berman J; Zorrilla-López U; Medina V; Farré G; Sandmann G; Capell T; Christou P; Zhu C
    Plant Cell Rep; 2017 Jun; 36(6):933-945. PubMed ID: 28314904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis.
    Yang X; Chen L; He J; Yu W
    Plant Cell Rep; 2017 Oct; 36(10):1533-1545. PubMed ID: 28676963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing carotenoid biosynthesis in rice endosperm by metabolic engineering.
    Tian YS; Wang B; Peng RH; Xu J; Li T; Fu XY; Xiong AS; Gao JJ; Yao QH
    Plant Biotechnol J; 2019 May; 17(5):849-851. PubMed ID: 30582663
    [No Abstract]   [Full Text] [Related]  

  • 13. From Golden Rice to aSTARice: Bioengineering Astaxanthin Biosynthesis in Rice Endosperm.
    Zhu Q; Zeng D; Yu S; Cui C; Li J; Li H; Chen J; Zhang R; Zhao X; Chen L; Liu YG
    Mol Plant; 2018 Dec; 11(12):1440-1448. PubMed ID: 30296601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel carotenoid, 4-keto-α-carotene, as an unexpected by-product during genetic engineering of carotenogenesis in rice callus.
    Breitenbach J; Bai C; Rivera SM; Canela R; Capell T; Christou P; Zhu C; Sandmann G
    Phytochemistry; 2014 Feb; 98():85-91. PubMed ID: 24393458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism.
    Decourcelle M; Perez-Fons L; Baulande S; Steiger S; Couvelard L; Hem S; Zhu C; Capell T; Christou P; Fraser P; Sandmann G
    J Exp Bot; 2015 Jun; 66(11):3141-50. PubMed ID: 25796085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid.
    Farré G; Perez-Fons L; Decourcelle M; Breitenbach J; Hem S; Zhu C; Capell T; Christou P; Fraser PD; Sandmann G
    Transgenic Res; 2016 Aug; 25(4):477-89. PubMed ID: 26931320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Maize Hybrids with Diverse Carotenoid Profiles and Potential Applications in Animal Feeding.
    Zhu C; Farré G; Díaz-Gómez J; Capell T; Nogareda C; Sandmann G; Christou P
    Adv Exp Med Biol; 2021; 1261():95-113. PubMed ID: 33783733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable T-DNA linkage configuration affects inheritance of carotenogenic transgenes and carotenoid accumulation in transgenic indica rice.
    Rai M; Datta K; Parkhi V; Tan J; Oliva N; Chawla HS; Datta SK
    Plant Cell Rep; 2007 Aug; 26(8):1221-31. PubMed ID: 17377795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis.
    Zhou X; Welsch R; Yang Y; Álvarez D; Riediger M; Yuan H; Fish T; Liu J; Thannhauser TW; Li L
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3558-63. PubMed ID: 25675505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops.
    Matthews PD; Luo R; Wurtzel ET
    J Exp Bot; 2003 Oct; 54(391):2215-30. PubMed ID: 14504297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.