BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25857747)

  • 1. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    ACS Nano; 2015; 9(4):4600-10. PubMed ID: 25857747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle-tethered NADH for production of methanol from CO(2) catalyzed by coimmobilized enzymes.
    El-Zahab B; Donnelly D; Wang P
    Biotechnol Bioeng; 2008 Feb; 99(3):508-14. PubMed ID: 17680680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    Small; 2016 Sep; 12(34):4753-62. PubMed ID: 27273818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO
    Ren S; Wang Z; Bilal M; Feng Y; Jiang Y; Jia S; Cui J
    Int J Biol Macromol; 2020 Jul; 155():110-118. PubMed ID: 32220640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction.
    Liu J; Cazelles R; Chen ZP; Zhou H; Galarneau A; Antonietti M
    Phys Chem Chem Phys; 2014 Jul; 16(28):14699-705. PubMed ID: 24915954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Enzymatic Cascade of Reactions for the Reduction of CO
    Di Spiridione C; Aresta M; Dibenedetto A
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonic Anhydrase Carrying Electrospun Nanofibers for Biocatalysis Applications.
    Ünlüer ÖB; Ecevit K; Diltemiz SE
    Protein Pept Lett; 2021; 28(5):520-532. PubMed ID: 33143606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol.
    Luo J; Meyer AS; Mateiu RV; Pinelo M
    N Biotechnol; 2015 May; 32(3):319-27. PubMed ID: 25698375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration.
    Wang L; Zhang H; Ching CB; Chen Y; Jiang R
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1233-41. PubMed ID: 22116631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized Enzymes on Graphene as Nanobiocatalyst.
    Seelajaroen H; Bakandritsos A; Otyepka M; Zbořil R; Sariciftci NS
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):250-259. PubMed ID: 31816230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.
    Zheng M; Su Z; Ji X; Ma G; Wang P; Zhang S
    J Biotechnol; 2013 Oct; 168(2):212-7. PubMed ID: 23756150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition.
    Srikanth S; Alvarez-Gallego Y; Vanbroekhoven K; Pant D
    Chemphyschem; 2017 Nov; 18(22):3174-3181. PubMed ID: 28303650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.
    Marpani F; Sárossy Z; Pinelo M; Meyer AS
    Biotechnol Bioeng; 2017 Dec; 114(12):2762-2770. PubMed ID: 28832942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Ready-to-use" hollow nanofiber membrane-based glucose testing strips.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    Analyst; 2014 Dec; 139(24):6467-73. PubMed ID: 25343161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD
    Lim K; Lee YS; Simoska O; Dong F; Sima M; Stewart RJ; Minteer SD
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10942-10951. PubMed ID: 33646753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-carrying electrospun nanofibers.
    Jia H
    Methods Mol Biol; 2011; 743():205-12. PubMed ID: 21553193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.
    Liu W; Zhang S; Wang P
    J Biotechnol; 2009 Jan; 139(1):102-7. PubMed ID: 19000722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade.
    Kuk SK; Singh RK; Nam DH; Singh R; Lee JK; Park CB
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3827-3832. PubMed ID: 28120367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling multienzyme biocatalysis using nanoporous materials.
    El-Zahab B; Jia H; Wang P
    Biotechnol Bioeng; 2004 Jul; 87(2):178-83. PubMed ID: 15236246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells.
    Ji X; Wang P; Su Z; Ma G; Zhang S
    J Mater Chem B; 2014 Jan; 2(2):181-190. PubMed ID: 32261605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.