These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 25857795)
1. Methods for labeling skeletal muscle ion channels site-specifically with fluorophores suitable for FRET-based structural analysis. Mahalingam M; Fessenden JD Methods Enzymol; 2015; 556():455-74. PubMed ID: 25857795 [TBL] [Abstract][Full Text] [Related]
2. Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs. Fessenden JD; Mahalingam M PLoS One; 2013; 8(5):e64686. PubMed ID: 23724080 [TBL] [Abstract][Full Text] [Related]
3. Förster resonance energy transfer measurements of ryanodine receptor type 1 structure using a novel site-specific labeling method. Fessenden JD PLoS One; 2009 Oct; 4(10):e7338. PubMed ID: 19823671 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET) of Dihydropyridine Receptor (DHPR) β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes. Bhattacharya D; Mehle A; Kamp TJ; Balijepalli RC PLoS One; 2015; 10(6):e0131399. PubMed ID: 26114725 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence resonance energy transfer (FRET) indicates that association with the type I ryanodine receptor (RyR1) causes reorientation of multiple cytoplasmic domains of the dihydropyridine receptor (DHPR) α(1S) subunit. Polster A; Ohrtman JD; Beam KG; Papadopoulos S J Biol Chem; 2012 Nov; 287(49):41560-8. PubMed ID: 23071115 [TBL] [Abstract][Full Text] [Related]
6. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1. Raina SA; Tsai J; Samsó M; Fessenden JD PLoS One; 2012; 7(6):e38594. PubMed ID: 22719904 [TBL] [Abstract][Full Text] [Related]
7. Mapping sites of potential proximity between the dihydropyridine receptor and RyR1 in muscle using a cyan fluorescent protein-yellow fluorescent protein tandem as a fluorescence resonance energy transfer probe. Papadopoulos S; Leuranguer V; Bannister RA; Beam KG J Biol Chem; 2004 Oct; 279(42):44046-56. PubMed ID: 15280389 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence Resonance Energy Transfer-based Structural Analysis of the Dihydropyridine Receptor α1S Subunit Reveals Conformational Differences Induced by Binding of the β1a Subunit. Mahalingam M; Perez CF; Fessenden JD J Biol Chem; 2016 Jun; 291(26):13762-70. PubMed ID: 27129199 [TBL] [Abstract][Full Text] [Related]
9. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes. Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065 [TBL] [Abstract][Full Text] [Related]
10. N-terminal and central segments of the type 1 ryanodine receptor mediate its interaction with FK506-binding proteins. Girgenrath T; Mahalingam M; Svensson B; Nitu FR; Cornea RL; Fessenden JD J Biol Chem; 2013 May; 288(22):16073-84. PubMed ID: 23585572 [TBL] [Abstract][Full Text] [Related]
11. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Cheng W; Altafaj X; Ronjat M; Coronado R Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209 [TBL] [Abstract][Full Text] [Related]
12. Structure and targeting of RyR1: implications from fusion of green fluorescent protein at the amino-terminal. Lorenzon NM; Grabner M; Suda N; Beam KG Arch Biochem Biophys; 2001 Apr; 388(1):13-7. PubMed ID: 11361129 [TBL] [Abstract][Full Text] [Related]
13. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Protasi F; Takekura H; Wang Y; Chen SR; Meissner G; Allen PD; Franzini-Armstrong C Biophys J; 2000 Nov; 79(5):2494-508. PubMed ID: 11053125 [TBL] [Abstract][Full Text] [Related]
14. Divergence in the behaviour of the dihydropyridine receptor in muscle. Lüttgau HC J Physiol; 2000 Aug; 526 Pt 3():469. PubMed ID: 10921999 [TBL] [Abstract][Full Text] [Related]
15. An α-helical C-terminal tail segment of the skeletal L-type Ca2+ channel β1a subunit activates ryanodine receptor type 1 via a hydrophobic surface. Karunasekara Y; Rebbeck RT; Weaver LM; Board PG; Dulhunty AF; Casarotto MG FASEB J; 2012 Dec; 26(12):5049-59. PubMed ID: 22962299 [TBL] [Abstract][Full Text] [Related]
16. Site-specific, orthogonal labeling of proteins in intact cells with two small biarsenical fluorophores. Zürn A; Klenk C; Zabel U; Reiner S; Lohse MJ; Hoffmann C Bioconjug Chem; 2010 May; 21(5):853-9. PubMed ID: 20429545 [TBL] [Abstract][Full Text] [Related]
17. ReAsH as a Quantitative Probe of In-Cell Protein Dynamics. Gelman H; Wirth AJ; Gruebele M Biochemistry; 2016 Apr; 55(13):1968-76. PubMed ID: 26959408 [TBL] [Abstract][Full Text] [Related]
18. Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening. Zhang J; Singh DP; Ko CY; Nikolaienko R; Wong King Yuen SM; Schwarz JA; Treinen LM; Tung CC; Rožman K; Svensson B; Aldrich CC; Zima AV; Thomas DD; Bers DM; Launikonis BS; Van Petegem F; Cornea RL J Biol Chem; 2022 Jan; 298(1):101412. PubMed ID: 34793835 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent probing with felodipine of the dihydropyridine receptor and its interaction with the ryanodine receptor calcium release channel. Minarovic I; Mészáros LG Biochem Biophys Res Commun; 1998 Mar; 244(2):519-24. PubMed ID: 9514900 [TBL] [Abstract][Full Text] [Related]
20. Two domains in dihydropyridine receptor activate the skeletal muscle Ca(2+) release channel. Stange M; Tripathy A; Meissner G Biophys J; 2001 Sep; 81(3):1419-29. PubMed ID: 11509356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]