BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 25857964)

  • 1. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructural effects on polymer and water dynamics in cellulose biocomposites: (2)h and (13)c NMR relaxometry.
    Terenzi C; Prakobna K; Berglund LA; Furó I
    Biomacromolecules; 2015 May; 16(5):1506-15. PubMed ID: 25853702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers.
    Prakobna K; Galland S; Berglund LA
    Biomacromolecules; 2015 Mar; 16(3):904-12. PubMed ID: 25650787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and cellulose nanocrystals.
    Doineau E; Coqueugniot G; Pucci MF; Caro AS; Cathala B; Bénézet JC; Bras J; Le Moigne N
    Carbohydr Polym; 2021 Feb; 254():117403. PubMed ID: 33357891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring.
    Ansari F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2341-2350. PubMed ID: 29577729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface.
    Boujemaoui A; Ansari F; Berglund LA
    Biomacromolecules; 2019 Feb; 20(2):598-607. PubMed ID: 30047261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: extending the range of mechanical and barrier properties.
    Kochumalayil JJ; Bergenstråhle-Wohlert M; Utsel S; Wågberg L; Zhou Q; Berglund LA
    Biomacromolecules; 2013 Jan; 14(1):84-91. PubMed ID: 23198819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting.
    Jaafar Z; Quelennec B; Moreau C; Lourdin D; Maigret JE; Pontoire B; D'orlando A; Coradin T; Duchemin B; Fernandes FM; Cathala B
    Carbohydr Polym; 2020 Nov; 247():116642. PubMed ID: 32829789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring architecture of xyloglucan cellulose nanocrystal complexes through enzyme susceptibility at different adsorption regimes.
    Dammak A; Quémener B; Bonnin E; Alvarado C; Bouchet B; Villares A; Moreau C; Cathala B
    Biomacromolecules; 2015 Feb; 16(2):589-96. PubMed ID: 25539015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites.
    Benítez AJ; Lossada F; Zhu B; Rudolph T; Walther A
    Biomacromolecules; 2016 Jul; 17(7):2417-26. PubMed ID: 27303948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell particles formed by β-lactoglobulin microgel coated with xyloglucan.
    Gtari W; Aschi A; Nicolai T; de Freitas RA
    Int J Biol Macromol; 2016 Nov; 92():357-361. PubMed ID: 27426701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of mixing efficiency in elaborating of chitosan/cellulose nanocomposite via statistical analyses.
    Ghazanfari M; Ranginkar Jahromi I; Moallemi-Oreh A; Ebadi-Dehaghani H; Akbarzadeh M
    Int J Biol Macromol; 2016 Dec; 93(Pt A):703-711. PubMed ID: 27608545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular adhesion at clay nanocomposite interfaces depends on counterion hydration-molecular dynamics simulation of montmorillonite/xyloglucan.
    Wang Y; Wohlert J; Bergenstråhle-Wohlert M; Kochumalayil JJ; Berglund LA; Tu Y; Ågren H
    Biomacromolecules; 2015 Jan; 16(1):257-65. PubMed ID: 25389796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites.
    Syafri E; Kasim A; Abral H; Sudirman ; Sulungbudi GT; Sanjay MR; Sari NH
    Int J Biol Macromol; 2018 Dec; 120(Pt A):578-586. PubMed ID: 30165147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.
    Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A
    Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wood inspired biobased nanocomposite films composed of xylans, lignosulfonates and cellulose nanofibers for active food packaging.
    Silva JM; Vilela C; Girão AV; Branco PC; Martins J; Freire MG; Silvestre AJD; Freire CSR
    Carbohydr Polym; 2024 Aug; 337():122112. PubMed ID: 38710545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.