BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25858105)

  • 1. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles.
    Sun L; Fan Z; Wang Y; Huang Y; Schmidt M; Zhang M
    Soft Matter; 2015 May; 11(19):3822-32. PubMed ID: 25858105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of structures and properties of cyclic peptide nanotubes by experiment and molecular dynamics.
    Zhu J; Cheng J; Liao Z; Lai Z; Liu B
    J Comput Aided Mol Des; 2008 Nov; 22(11):773-81. PubMed ID: 18385947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of gold nanoparticles using multifunctional peptides.
    Slocik JM; Stone MO; Naik RR
    Small; 2005 Nov; 1(11):1048-52. PubMed ID: 17193392
    [No Abstract]   [Full Text] [Related]  

  • 4. Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes.
    Cuerva M; García-Fandiño R; Vázquez-Vázquez C; López-Quintela MA; Montenegro J; Granja JR
    ACS Nano; 2015 Nov; 9(11):10834-43. PubMed ID: 26439906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of cyclic peptide nanotubes (cPNTs).
    Hsieh WH; Liaw J
    J Food Drug Anal; 2019 Jan; 27(1):32-47. PubMed ID: 30648586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of gold nanoparticles using genetically engineered polypeptides.
    Zin MT; Ma H; Sarikaya M; Jen AK
    Small; 2005 Jul; 1(7):698-702. PubMed ID: 17193508
    [No Abstract]   [Full Text] [Related]  

  • 9. Piezoelectric property of bundled peptide nanotubes stapled by bis-cyclic-β-peptide.
    Tabata Y; Takagaki K; Uji H; Kimura S
    J Pept Sci; 2019 Jan; 25(1):e3134. PubMed ID: 30393975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Chloride Anions on the Formation of Self-Assembled Diphenylalanine Peptide Nanotubes.
    Dayarian S; Kopyl S; Bystrov V; Correia MR; Ivanov MS; Pelegova E; Kholkin A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1563-1570. PubMed ID: 29994474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides.
    Yamashita I; Kirimura H; Okuda M; Nishio K; Sano K; Shiba K; Hayashi T; Hara M; Mishima Y
    Small; 2006 Oct; 2(10):1148-52. PubMed ID: 17193580
    [No Abstract]   [Full Text] [Related]  

  • 13. Polymer-wrapped peptide nanotubes: peptide-grafted polymer mass impacts length and diameter.
    Couet J; Biesalski M
    Small; 2008 Jul; 4(7):1008-16. PubMed ID: 18576283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies.
    Yan X; Cui Y; He Q; Wang K; Li J; Mu W; Wang B; Ou-Yang ZC
    Chemistry; 2008; 14(19):5974-80. PubMed ID: 18478616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and Piezoelectric Properties of a Single-Peptide Nanotube Composed of Cyclic β-peptides with Helical Peptides on the Side Chains.
    Kurita T; Terabayashi T; Kimura S; Numata K; Uji H
    Biomacromolecules; 2021 Jul; 22(7):2815-2821. PubMed ID: 34000810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control.
    Calvelo M; Granja JR; Garcia-Fandino R
    Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence dependent proton conduction in self-assembled peptide nanostructures.
    Lerner Yardeni J; Amit M; Ashkenasy G; Ashkenasy N
    Nanoscale; 2016 Jan; 8(4):2358-66. PubMed ID: 26750973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.