BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25858105)

  • 21. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
    Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S
    Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide nanotubes.
    Hamley IW
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6866-81. PubMed ID: 24920517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide synthesis and self-assembly.
    Maude S; Tai LR; Davies RP; Liu B; Harris SA; Kocienski PJ; Aggeli A
    Top Curr Chem; 2012; 310():27-69. PubMed ID: 22025061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials.
    Sano K; Ajima K; Iwahori K; Yudasaka M; Iijima S; Yamashita I; Shiba K
    Small; 2005 Aug; 1(8-9):826-32. PubMed ID: 17193533
    [No Abstract]   [Full Text] [Related]  

  • 25. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide nanotube composed of cyclic tetra-β-peptide having polydiacetylene.
    Ishihara Y; Kimura S
    Biopolymers; 2012; 98(2):155-60. PubMed ID: 22733527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of peptide-nanotube platinum-nanoparticle composites.
    Song Y; Challa SR; Medforth CJ; Qiu Y; Watt RK; Pena D; Miller JE; van Swol F; Shelnutt JA
    Chem Commun (Camb); 2004 May; (9):1044-5. PubMed ID: 15116176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes.
    Calvelo M; Vázquez S; García-Fandiño R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs.
    Kerr A; Sagita E; Mansfield EDH; Nguyen TH; Feeney OM; Pouton CW; Porter CJH; Sanchis J; Perrier S
    Biomacromolecules; 2022 Jun; 23(6):2315-2328. PubMed ID: 35582852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembled Peptide Nanotube Films with High Proton Conductivity.
    Silberbush O; Engel M; Sivron I; Roy S; Ashkenasy N
    J Phys Chem B; 2019 Nov; 123(46):9882-9888. PubMed ID: 31682119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH-controlled aggregation polymorphism of amyloidogenic Aβ(16-22): insights for obtaining peptide tapes and peptide nanotubes, as function of the N-terminal capping moiety.
    Elgersma RC; Kroon-Batenburg LM; Posthuma G; Meeldijk JD; Rijkers DT; Liskamp RM
    Eur J Med Chem; 2014 Dec; 88():55-65. PubMed ID: 25087966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A General Strategy for Facile Synthesis and In Situ Screening of Self-Assembled Polymer-Peptide Nanomaterials.
    Qiao ZY; Lin YX; Lai WJ; Hou CY; Wang Y; Qiao SL; Zhang D; Fang QJ; Wang H
    Adv Mater; 2016 Mar; 28(9):1859-67. PubMed ID: 26698326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of fused homo-oligomers to create nanotubes.
    Buch I; Tsai CJ; Wolfson HJ; Nussinov R
    Methods Mol Biol; 2008; 474():117-31. PubMed ID: 19031064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elementary building blocks of self-assembled peptide nanotubes.
    Amdursky N; Molotskii M; Gazit E; Rosenman G
    J Am Chem Soc; 2010 Nov; 132(44):15632-6. PubMed ID: 20958029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water-soluble and pH-responsive polymeric nanotubes from cyclic peptide templates.
    Chapman R; Warr GG; Perrier S; Jolliffe KA
    Chemistry; 2013 Feb; 19(6):1955-61. PubMed ID: 23297172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly of nanomaterials through highly ordered self-assembled monolayers and peptide-organic hybrid conjugates as templates.
    Ma H; Zin MT; Zareie MH; Kang MS; Kang SH; Kim KS; Reed BW; Behar CT; Sarikaya M; Jen AK
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2549-66. PubMed ID: 17685271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptide nanotube-modified electrodes for enzyme-biosensor applications.
    Yemini M; Reches M; Gazit E; Rishpon J
    Anal Chem; 2005 Aug; 77(16):5155-9. PubMed ID: 16097753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of cyclic homo- and hetero-beta-peptides with cis- furanoid sugar amino acid and beta-hGly as building blocks.
    Jagannadh B; Reddy MS; Rao CL; Prabhakar A; Jagadeesh B; Chandrasekhar S
    Chem Commun (Camb); 2006 Dec; (46):4847-9. PubMed ID: 17345749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.