BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25858320)

  • 1. Sir2 is involved in the transcriptional modulation of NHP6A in Saccharomyces cerevisiae.
    Ciuffetta A; Salerno D; Camilloni G; Venditti S
    Biochem Biophys Res Commun; 2015 May; 461(1):42-6. PubMed ID: 25858320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin-mediated transcriptional regulation by the yeast architectural factors NHP6A and NHP6B.
    Moreira JM; Holmberg S
    EMBO J; 2000 Dec; 19(24):6804-13. PubMed ID: 11118215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple pathways regulating the calorie restriction response in yeast.
    Rahat O; Maoz N; Cohen HY
    J Gerontol A Biol Sci Med Sci; 2011 Feb; 66(2):163-9. PubMed ID: 21081478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1.
    Salvi JS; Chan JN; Pettigrew C; Liu TT; Wu JD; Mekhail K
    Aging Cell; 2013 Feb; 12(1):67-75. PubMed ID: 23082874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae.
    Yu Q; Elizondo S; Bi X
    J Mol Biol; 2006 Mar; 356(5):1082-92. PubMed ID: 16406069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
    Gartenberg MR; Smith JS
    Genetics; 2016 Aug; 203(4):1563-99. PubMed ID: 27516616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sir2 blocks extreme life-span extension.
    Fabrizio P; Gattazzo C; Battistella L; Wei M; Cheng C; McGrew K; Longo VD
    Cell; 2005 Nov; 123(4):655-67. PubMed ID: 16286010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of functional sirtuin chromatin targets in yeast.
    Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS
    Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae.
    Guo Z; Adomas AB; Jackson ED; Qin H; Townsend JP
    FEMS Yeast Res; 2011 Jun; 11(4):345-55. PubMed ID: 21306556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional Control of Chronological Aging and Heterochromatin in
    McCleary DF; Rine J
    Genetics; 2017 Mar; 205(3):1179-1193. PubMed ID: 28064165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sir2-independent life span extension by calorie restriction in yeast.
    Kaeberlein M; Kirkland KT; Fields S; Kennedy BK
    PLoS Biol; 2004 Sep; 2(9):E296. PubMed ID: 15328540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast.
    Yeom S; Oh J; Lee JS
    Genes Genomics; 2022 Mar; 44(3):359-367. PubMed ID: 35034281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin.
    Wang SH; Lee SP; Tung SY; Tsai SP; Tsai HC; Shen HH; Hong JY; Su KC; Chen FJ; Liu BH; Wu YY; Hsiao SP; Tsai MS; Liou GG
    Arch Biochem Biophys; 2019 Aug; 671():167-174. PubMed ID: 31295433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae.
    Kang WK; Devare M; Kim JY
    J Microbiol; 2017 Feb; 55(2):123-129. PubMed ID: 28120189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIR-dependent repression of non-telomeric genes in Saccharomyces cerevisiae?
    Marchfelder U; Rateitschak K; Ehrenhofer-Murray AE
    Yeast; 2003 Jul; 20(9):797-801. PubMed ID: 12845605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat stress-induced Cup9-dependent transcriptional regulation of SIR2.
    Laskar S; K S; Bhattacharyya MK; Nair AS; Dhar P; Bhattacharyya S
    Mol Cell Biol; 2015 Jan; 35(2):437-50. PubMed ID: 25384977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3.
    Moazed D; Kistler A; Axelrod A; Rine J; Johnson AD
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2186-91. PubMed ID: 9122169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sir2 and Reb1 antagonistically regulate nucleosome occupancy in subtelomeric X-elements and repress TERRAs by distinct mechanisms.
    Bauer SL; Grochalski TNT; Smialowska A; Åström SU
    PLoS Genet; 2022 Sep; 18(9):e1010419. PubMed ID: 36137093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.