These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 25858512)
21. Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels. Aksoy-Aksel A; Manahan-Vaughan D Neuroscience; 2015 Nov; 309():191-9. PubMed ID: 25791230 [TBL] [Abstract][Full Text] [Related]
22. Prepubertal castration-associated developmental changes in sigma-1 receptor gene expression levels regulate hippocampus area CA1 activity during adolescence. Moradpour F; Fathollahi Y; Naghdi N; Hosseinmardi N; Javan M Hippocampus; 2016 Jul; 26(7):933-46. PubMed ID: 26860755 [TBL] [Abstract][Full Text] [Related]
23. Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Popov VI; Davies HA; Rogachevsky VV; Patrushev IV; Errington ML; Gabbott PL; Bliss TV; Stewart MG Neuroscience; 2004; 128(2):251-62. PubMed ID: 15350638 [TBL] [Abstract][Full Text] [Related]
24. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Ngo-Anh TJ; Bloodgood BL; Lin M; Sabatini BL; Maylie J; Adelman JP Nat Neurosci; 2005 May; 8(5):642-9. PubMed ID: 15852011 [TBL] [Abstract][Full Text] [Related]
25. Ras does not contribute to the facilitation of hippocampal synaptic plasticity enabled by environmental enrichment. Novkovic T; Heumann R; Manahan-Vaughan D Neuroscience; 2015 Nov; 309():214-23. PubMed ID: 25934042 [TBL] [Abstract][Full Text] [Related]
26. Heterophilic Type II Cadherins Are Required for High-Magnitude Synaptic Potentiation in the Hippocampus. Basu R; Duan X; Taylor MR; Martin EA; Muralidhar S; Wang Y; Gangi-Wellman L; Das SC; Yamagata M; West PJ; Sanes JR; Williams ME Neuron; 2017 Sep; 96(1):160-176.e8. PubMed ID: 28957665 [TBL] [Abstract][Full Text] [Related]
27. Biophysical Modeling of Actin-Mediated Structural Plasticity Reveals Mechanical Adaptation in Dendritic Spines. Bonilla-Quintana M; Rangamani P eNeuro; 2024 Mar; 11(3):. PubMed ID: 38383589 [TBL] [Abstract][Full Text] [Related]
28. Regulation of microRNA expression by induction of bidirectional synaptic plasticity. Park CS; Tang SJ J Mol Neurosci; 2009 May; 38(1):50-6. PubMed ID: 18998061 [TBL] [Abstract][Full Text] [Related]
29. Role of α4-containing GABA Shen H; Sabaliauskas N; Yang L; Aoki C; Smith SS Brain Res; 2017 Jan; 1654(Pt B):116-122. PubMed ID: 26826007 [TBL] [Abstract][Full Text] [Related]
30. Postnatal alterations in induction threshold and expression magnitude of long-term potentiation and long-term depression at hippocampal synapses. Dumas TC Hippocampus; 2012 Feb; 22(2):188-99. PubMed ID: 21069779 [TBL] [Abstract][Full Text] [Related]
31. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity. Bertling E; Englund J; Minkeviciene R; Koskinen M; Segerstråle M; Castrén E; Taira T; Hotulainen P J Neurosci; 2016 May; 36(19):5299-313. PubMed ID: 27170127 [TBL] [Abstract][Full Text] [Related]
32. A role for the spine apparatus in LTP and spatial learning. Jedlicka P; Vlachos A; Schwarzacher SW; Deller T Behav Brain Res; 2008 Sep; 192(1):12-9. PubMed ID: 18395274 [TBL] [Abstract][Full Text] [Related]
33. Neurosteroid effects at α4βδ GABAA receptors alter spatial learning and synaptic plasticity in CA1 hippocampus across the estrous cycle of the mouse. Sabaliauskas N; Shen H; Molla J; Gong QH; Kuver A; Aoki C; Smith SS Brain Res; 2015 Sep; 1621():170-86. PubMed ID: 25542386 [TBL] [Abstract][Full Text] [Related]
35. Effects of exposure to extremely low frequency electromagnetic fields on hippocampal long-term potentiation in hippocampal CA1 region. Zheng Y; Cheng J; Dong L; Ma X; Kong Q Biochem Biophys Res Commun; 2019 Sep; 517(3):513-519. PubMed ID: 31376941 [TBL] [Abstract][Full Text] [Related]
36. Age-Dependent Regulation of Dendritic Spine Density and Protein Expression in Mir324 KO Mice. Parkins EV; Burwinkel JM; Ranatunga R; Yaser S; Hu YC; Tiwari D; Gross C J Mol Neurosci; 2023 Oct; 73(9-10):818-830. PubMed ID: 37773316 [TBL] [Abstract][Full Text] [Related]
37. Repetitive induction of late-phase LTP produces long-lasting synaptic enhancement accompanied by synaptogenesis in cultured hippocampal slices. Tominaga-Yoshino K; Urakubo T; Okada M; Matsuda H; Ogura A Hippocampus; 2008; 18(3):281-93. PubMed ID: 18058822 [TBL] [Abstract][Full Text] [Related]
38. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. Nguyen PV; Duffy SN; Young JZ J Neurophysiol; 2000 Nov; 84(5):2484-93. PubMed ID: 11067991 [TBL] [Abstract][Full Text] [Related]
39. Prolyl endopeptidase-deficient mice have reduced synaptic spine density in the CA1 region of the hippocampus, impaired LTP, and spatial learning and memory. D'Agostino G; Kim JD; Liu ZW; Jeong JK; Suyama S; Calignano A; Gao XB; Schwartz M; Diano S Cereb Cortex; 2013 Aug; 23(8):2007-14. PubMed ID: 22767632 [TBL] [Abstract][Full Text] [Related]
40. Activity-dependent actin dynamics are required for the maintenance of long-term plasticity and for synaptic capture. Fonseca R Eur J Neurosci; 2012 Jan; 35(2):195-206. PubMed ID: 22250814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]