These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
885 related articles for article (PubMed ID: 25858557)
21. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
23. Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Lu Q; Wang X; Lu S; Li M; Kaplan DL; Zhu H Biomaterials; 2011 Feb; 32(4):1059-67. PubMed ID: 20970185 [TBL] [Abstract][Full Text] [Related]
24. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Singh BN; Panda NN; Mund R; Pramanik K Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575 [TBL] [Abstract][Full Text] [Related]
25. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584 [TBL] [Abstract][Full Text] [Related]
26. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues. Han F; Liu S; Liu X; Pei Y; Bai S; Zhao H; Lu Q; Ma F; Kaplan DL; Zhu H Acta Biomater; 2014 Feb; 10(2):921-30. PubMed ID: 24090985 [TBL] [Abstract][Full Text] [Related]
27. Green process to prepare water-insoluble silk scaffolds with silk I structure. Zhengshi Z; Zhaozhao D; Jiwei H; Jianzhong Q; Yixin S; Feng Z; Baoqi Z Int J Biol Macromol; 2018 Oct; 117():144-151. PubMed ID: 29803750 [TBL] [Abstract][Full Text] [Related]
28. In vivo evaluation of modified silk fibroin scaffolds with a mimicked microenvironment of fibronectin/decellularized pulp tissue for maxillofacial surgery. Thai TH; Nuntanaranont T; Kamolmatyakul S; Meesane J Biomed Mater; 2017 Nov; 13(1):015009. PubMed ID: 29165324 [TBL] [Abstract][Full Text] [Related]
29. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [TBL] [Abstract][Full Text] [Related]
30. Promoting spinal fusions by biomineralized silk fibroin films seeded with bone marrow stromal cells: An in vivo animal study. Gu Y; Chen L; Niu HY; Shen XF; Yang HL J Biomater Appl; 2016 Mar; 30(8):1251-60. PubMed ID: 26637445 [TBL] [Abstract][Full Text] [Related]
31. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Floren M; Bonani W; Dharmarajan A; Motta A; Migliaresi C; Tan W Acta Biomater; 2016 Feb; 31():156-166. PubMed ID: 26621695 [TBL] [Abstract][Full Text] [Related]
32. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Li DW; He J; He FL; Liu YL; Liu YY; Ye YJ; Deng X; Yin DC J Biomater Appl; 2018 Apr; 32(9):1164-1173. PubMed ID: 29471713 [TBL] [Abstract][Full Text] [Related]
33. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications. Dodel M; Hemmati Nejad N; Bahrami SH; Soleimani M; Hanaee-Ahvaz H Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):16-25. PubMed ID: 27609469 [TBL] [Abstract][Full Text] [Related]
34. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Wang S; Zhang Y; Wang H; Dong Z Int J Biol Macromol; 2011 Mar; 48(2):345-53. PubMed ID: 21182858 [TBL] [Abstract][Full Text] [Related]
35. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525 [TBL] [Abstract][Full Text] [Related]
36. Chondrogenic differentiation of Wharton's Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L-ascorbic acid and platelet rich plasma. Barlian A; Judawisastra H; Ridwan A; Wahyuni AR; Lingga ME Sci Rep; 2020 Nov; 10(1):19449. PubMed ID: 33173146 [TBL] [Abstract][Full Text] [Related]
37. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
39. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181 [TBL] [Abstract][Full Text] [Related]
40. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Zhang Q; Zhao Y; Yan S; Yang Y; Zhao H; Li M; Lu S; Kaplan DL Acta Biomater; 2012 Jul; 8(7):2628-38. PubMed ID: 22465574 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]