These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25859210)

  • 1. Corrigendum "fNIRS-based brain-computer interfaces: a review".
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():172. PubMed ID: 25859210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces.
    Hong KS; Khan MJ; Hong MJ
    Front Hum Neurosci; 2018; 12():246. PubMed ID: 30002623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the General Linear Model to Improve Performance in fNIRS Single Trial Analysis and Classification: A Perspective.
    von Lühmann A; Ortega-Martinez A; Boas DA; Yücel MA
    Front Hum Neurosci; 2020; 14():30. PubMed ID: 32132909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum: Multi-Modal Integration of EEG-fNIRS for Brain-Computer Interfaces - Current Limitations and Future Directions.
    Ahn S; Jun SC
    Front Hum Neurosci; 2021; 15():645869. PubMed ID: 33597855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating deep learning for fNIRS based BCI.
    Hennrich J; Herff C; Heger D; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2844-7. PubMed ID: 26736884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain-Computer Interface Using Adaptive Estimation of General Linear Model Coefficients.
    Qureshi NK; Naseer N; Noori FM; Nazeer H; Khan RA; Saleem S
    Front Neurorobot; 2017; 11():33. PubMed ID: 28769781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Modified Common Spatial Pattern Algorithm Customized for Feature Dimensionality Reduction in fNIRS-Based BCIs.
    Jiang X; Gu X; Mei Z; Ren H; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5073-5076. PubMed ID: 30441481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random Subspace Ensemble Learning for Functional Near-Infrared Spectroscopy Brain-Computer Interfaces.
    Shin J
    Front Hum Neurosci; 2020; 14():236. PubMed ID: 32765235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: a comparison between different classifiers.
    Bauernfeind G; Steyrl D; Brunner C; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2004-7. PubMed ID: 25570376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.
    Trakoolwilaiwan T; Behboodi B; Lee J; Kim K; Choi JW
    Neurophotonics; 2018 Jan; 5(1):011008. PubMed ID: 28924568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features.
    Li R; Potter T; Huang W; Zhang Y
    Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.
    Naseer N; Hong KS
    Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy.
    Hwang HJ; Choi H; Kim JY; Chang WD; Kim DW; Kim K; Jo S; Im CH
    J Biomed Opt; 2016 Sep; 21(9):091303. PubMed ID: 27050535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy.
    Lührs M; Goebel R
    Neurophotonics; 2017 Oct; 4(4):041504. PubMed ID: 29021985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional near-infrared spectroscopy based discrimination of mental counting and no-control state for development of a brain-computer interface.
    Naseer N; Hong KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1780-3. PubMed ID: 24110053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speaking mode recognition from functional Near Infrared Spectroscopy.
    Herff C; Putze F; Heger D; Guan C; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1715-8. PubMed ID: 23366240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.