These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 25859656)
1. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656 [TBL] [Abstract][Full Text] [Related]
2. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Faghani E; Gharechahi J; Komatsu S; Mirzaei M; Khavarinejad RA; Najafi F; Farsad LK; Salekdeh GH J Proteomics; 2015 Jan; 114():1-15. PubMed ID: 25449836 [TBL] [Abstract][Full Text] [Related]
3. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat. Ma D; Ding H; Wang C; Qin H; Han Q; Hou J; Lu H; Xie Y; Guo T PLoS One; 2016; 11(9):e0163082. PubMed ID: 27649534 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. Cheng L; Wang Y; He Q; Li H; Zhang X; Zhang F BMC Plant Biol; 2016 Aug; 16(1):188. PubMed ID: 27576435 [TBL] [Abstract][Full Text] [Related]
5. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459 [TBL] [Abstract][Full Text] [Related]
6. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Peng Z; Wang M; Li F; Lv H; Li C; Xia G Mol Cell Proteomics; 2009 Dec; 8(12):2676-86. PubMed ID: 19734139 [TBL] [Abstract][Full Text] [Related]
7. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Hao P; Zhu J; Gu A; Lv D; Ge P; Chen G; Li X; Yan Y Proteomics; 2015 May; 15(9):1544-63. PubMed ID: 25546360 [TBL] [Abstract][Full Text] [Related]
8. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Bian Y; Deng X; Yan X; Zhou J; Yuan L; Yan Y Sci Rep; 2017 Apr; 7():46183. PubMed ID: 28387352 [TBL] [Abstract][Full Text] [Related]
9. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. Moosavi SS; Abdi F; Abdollahi MR; Tahmasebi-Enferadi S; Maleki M Plant Physiol Biochem; 2020 Nov; 156():95-104. PubMed ID: 32920225 [TBL] [Abstract][Full Text] [Related]
10. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure. Yasmeen F; Raja NI; Razzaq A; Komatsu S Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299 [TBL] [Abstract][Full Text] [Related]
11. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Budak H; Akpinar BA; Unver T; Turktas M Plant Mol Biol; 2013 Sep; 83(1-2):89-103. PubMed ID: 23443681 [TBL] [Abstract][Full Text] [Related]
12. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965 [TBL] [Abstract][Full Text] [Related]
13. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). Xiao S; Liu L; Zhang Y; Sun H; Zhang K; Bai Z; Dong H; Liu Y; Li C BMC Plant Biol; 2020 Jul; 20(1):328. PubMed ID: 32652934 [TBL] [Abstract][Full Text] [Related]
14. Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. Cheng Z; Dong K; Ge P; Bian Y; Dong L; Deng X; Li X; Yan Y PLoS One; 2015; 10(5):e0125302. PubMed ID: 25984726 [TBL] [Abstract][Full Text] [Related]
15. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841. Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. Li G; Peng X; Xuan H; Wei L; Yang Y; Guo T; Kang G J Proteome Res; 2013 Nov; 12(11):4846-61. PubMed ID: 24074260 [TBL] [Abstract][Full Text] [Related]
17. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
19. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. Alvarez S; Roy Choudhury S; Pandey S J Proteome Res; 2014 Mar; 13(3):1688-701. PubMed ID: 24475748 [TBL] [Abstract][Full Text] [Related]
20. Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress. Kang G; Li G; Wang L; Wei L; Yang Y; Wang P; Yang Y; Wang Y; Feng W; Wang C; Guo T J Proteome Res; 2015 Jan; 14(1):249-67. PubMed ID: 25330896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]