These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
668 related articles for article (PubMed ID: 25859663)
1. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests. Pec GJ; Karst J; Sywenky AN; Cigan PW; Erbilgin N; Simard SW; Cahill JF PLoS One; 2015; 10(4):e0124691. PubMed ID: 25859663 [TBL] [Abstract][Full Text] [Related]
2. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. Pec GJ; Karst J; Taylor DL; Cigan PW; Erbilgin N; Cooke JE; Simard SW; Cahill JF New Phytol; 2017 Jan; 213(2):864-873. PubMed ID: 27659418 [TBL] [Abstract][Full Text] [Related]
3. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests. McIntosh AC; Macdonald SE; Quideau SA PLoS One; 2016; 11(3):e0151436. PubMed ID: 26975055 [TBL] [Abstract][Full Text] [Related]
4. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests? Morris JE; Buonanduci MS; Agne MC; Battaglia MA; Harvey BJ Ecol Appl; 2022 Jan; 32(1):e02474. PubMed ID: 34653267 [TBL] [Abstract][Full Text] [Related]
5. Vegetation dynamics following compound disturbance in a dry pine forest: fuel treatment then bark beetle outbreak. Crotteau JS; Keyes CR; Hood SM; Larson AJ Ecol Appl; 2020 Mar; 30(2):e02023. PubMed ID: 31628705 [TBL] [Abstract][Full Text] [Related]
6. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Hood SM; Baker S; Sala A Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724 [TBL] [Abstract][Full Text] [Related]
7. A Model for Mountain Pine Beetle Outbreaks in an Age-Structured Forest: Predicting Severity and Outbreak-Recovery Cycle Period. Duncan JP; Powell JA; Gordillo LF; Eason J Bull Math Biol; 2015 Jul; 77(7):1256-84. PubMed ID: 25976694 [TBL] [Abstract][Full Text] [Related]
8. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem. Buotte PC; Hicke JA; Preisler HK; Abatzoglou JT; Raffa KF; Logan JA Ecol Appl; 2016 Dec; 26(8):2505-2522. PubMed ID: 27907251 [TBL] [Abstract][Full Text] [Related]
9. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon. Agne MC; Shaw DC; Woolley TJ; Queijeiro-Bolaños ME PLoS One; 2014; 9(9):e107532. PubMed ID: 25221963 [TBL] [Abstract][Full Text] [Related]
10. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Harvey BJ; Donato DC; Turner MG Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15120-5. PubMed ID: 25267633 [TBL] [Abstract][Full Text] [Related]
11. Species diversity patterns in managed Scots pine stands in ancient forest sites. Stefańska-Krzaczek E; Staniaszek-Kik M; Szczepańska K; Szymura TH PLoS One; 2019; 14(7):e0219620. PubMed ID: 31295314 [TBL] [Abstract][Full Text] [Related]
12. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle. Erbilgin N; Cale JA; Lusebrink I; Najar A; Klutsch JG; Sherwood P; Enrico Bonello P; Evenden ML Tree Physiol; 2017 Mar; 37(3):338-350. PubMed ID: 27881799 [TBL] [Abstract][Full Text] [Related]
13. Snagfall the first decade after severe bark beetle infestation of high-elevation forests in Colorado, USA. Rhoades CC; Hubbard RM; Hood PR; Starr BJ; Tinker DB; Elder K Ecol Appl; 2020 Apr; 30(3):e02059. PubMed ID: 31849139 [TBL] [Abstract][Full Text] [Related]
14. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah. Lerch AP; Pfammatter JA; Bentz BJ; Raffa KF PLoS One; 2016; 11(10):e0164738. PubMed ID: 27783632 [TBL] [Abstract][Full Text] [Related]
15. Productivity and species richness in longleaf pine woodlands: resource-disturbance influences across an edaphic gradient. Kirkman LK; Giencke LM; Taylor RS; Boring LR; Staudhammer CL; Mitchell RJ Ecology; 2016 Sep; 97(9):2259-2271. PubMed ID: 27859094 [TBL] [Abstract][Full Text] [Related]
16. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA. Mietkiewicz N; Kulakowski D Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956 [TBL] [Abstract][Full Text] [Related]
17. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak. Teste FP; Lieffers VJ; Landhausser SM Ecol Appl; 2011 Jan; 21(1):150-62. PubMed ID: 21516894 [TBL] [Abstract][Full Text] [Related]