These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25859853)
1. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications. Trujillo-de Santiago G; Portales-Cabrera CG; Portillo-Lara R; Araiz-Hernández D; Del Barone MC; García-López E; Rojas-de Gante C; de Los Angeles De Santiago-Miramontes M; Segoviano-Ramírez JC; García-Lara S; Rodríguez-González CÁ; Alvarez MM; Di Maio E; Iannace S PLoS One; 2015; 10(4):e0122489. PubMed ID: 25859853 [TBL] [Abstract][Full Text] [Related]
2. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related]
3. The use of zein and Shuanghuangbu for periodontal tissue engineering. Yan-Zhi X; Jing-Jing W; Chen YP; Liu J; Li N; Yang FY Int J Oral Sci; 2010 Sep; 2(3):142-8. PubMed ID: 21125792 [TBL] [Abstract][Full Text] [Related]
5. Novel Fabricating Process for Porous Polyglycolic Acid Scaffolds by Melt-Foaming Using Supercritical Carbon Dioxide. Zhang J; Yang S; Yang X; Xi Z; Zhao L; Cen L; Lu E; Yang Y ACS Biomater Sci Eng; 2018 Feb; 4(2):694-706. PubMed ID: 33418757 [TBL] [Abstract][Full Text] [Related]
6. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance. Rouholamin D; van Grunsven W; Reilly GC; Smith PJ Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685 [TBL] [Abstract][Full Text] [Related]
8. Thermoplastic Starch with Poly(butylene adipate- Chang CJ; Venkatesan M; Cho CJ; Chung PY; Chandrasekar J; Lee CH; Wang HT; Wong CM; Kuo CC Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631835 [TBL] [Abstract][Full Text] [Related]
9. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Gualandi C; White LJ; Chen L; Gross RA; Shakesheff KM; Howdle SM; Scandola M Acta Biomater; 2010 Jan; 6(1):130-6. PubMed ID: 19619678 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology. Teng X; Ren J; Gu S J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):185-93. PubMed ID: 16924605 [TBL] [Abstract][Full Text] [Related]
11. Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Barry JJ; Gidda HS; Scotchford CA; Howdle SM Biomaterials; 2004 Aug; 25(17):3559-68. PubMed ID: 15020130 [TBL] [Abstract][Full Text] [Related]
12. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach. Santos-Rosales V; Ardao I; Alvarez-Lorenzo C; Ribeiro N; Oliveira AL; García-González CA Molecules; 2019 Mar; 24(5):. PubMed ID: 30823685 [TBL] [Abstract][Full Text] [Related]
13. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098 [TBL] [Abstract][Full Text] [Related]
14. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent. Li S; Chen X; Li M Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464 [TBL] [Abstract][Full Text] [Related]
15. Porous poly(D,L-lactic acid) foams with tunable structure and mechanical anisotropy prepared by supercritical carbon dioxide. Floren M; Spilimbergo S; Motta A; Migliaresi C J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):338-49. PubMed ID: 21953772 [TBL] [Abstract][Full Text] [Related]
16. Properties of thermoplastic maize starch-zein composite films prepared by extrusion process under alkaline conditions. Masanabo MA; Ray SS; Emmambux MN Int J Biol Macromol; 2022 May; 208():443-452. PubMed ID: 35304201 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable and Ultra-High Expansion Ratio PPC-P Foams Achieved by Microcellular Foaming Using CO Wu C; Zhang T; Liang J; Yin J; Xiao M; Han D; Huang S; Wang S; Meng Y Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998725 [TBL] [Abstract][Full Text] [Related]
19. Amorphous Polymers' Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO Haurat M; Dumon M Molecules; 2020 Nov; 25(22):. PubMed ID: 33202668 [TBL] [Abstract][Full Text] [Related]
20. Foamability of Cellulose Palmitate Using Various Physical Blowing Agents in the Extrusion Process. Rokkonen T; Willberg-Keyriläinen P; Ropponen J; Malm T Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]