BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 25860061)

  • 1. Immunotherapy strategies for spinal cord injury.
    Wang YT; Lu XM; Chen KT; Shu YH; Qiu CH
    Curr Pharm Biotechnol; 2015; 16(6):492-505. PubMed ID: 25860061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Clinical Advances in Immunotherapy Strategies for Spinal Cord Injury Target on MAIs and Their Receptors.
    Lu XM; Wei JX; Xiao L; Shu YH; Wang YT
    Curr Pharm Des; 2016; 22(6):728-37. PubMed ID: 26635269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA vaccine and the CNS axonal regeneration.
    Nie DY; Xu G; Ahmed S; Xiao ZC
    Curr Pharm Des; 2007; 13(24):2500-6. PubMed ID: 17692018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of a gold nanoparticle-based adjuvant to improve the therapeutic efficacy of hNgR-Fc protein immunization in spinal cord-injured rats.
    Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Zeng L; Long ZY; Wu YM
    Biomaterials; 2011 Nov; 32(31):7988-98. PubMed ID: 21784510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleic Acid Vaccine Targeting Nogo-66 Receptor and Paired Immunoglobulin-Like Receptor B as an Immunotherapy Strategy for Spinal Cord Injury in Rats.
    Lu XM; Mao M; Xiao L; Yu Y; He M; Zhao GY; Tang JJ; Feng S; Li S; He CM; Wang YT
    Neurotherapeutics; 2019 Apr; 16(2):381-393. PubMed ID: 30843154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats.
    Yu P; Huang L; Zou J; Yu Z; Wang Y; Wang X; Xu L; Liu X; Xu XM; Lu PH
    Neurobiol Dis; 2008 Dec; 32(3):535-42. PubMed ID: 18930141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of timing in the treatment of spinal cord injury.
    Saghazadeh A; Rezaei N
    Biomed Pharmacother; 2017 Aug; 92():128-139. PubMed ID: 28535416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic DNA vaccination as a repair strategy following spinal cord injury.
    Kou SB; Xu G; Jiang XD; Xu RX; Tang YP; Xu G; Cai YQ; Du MX; Xiao ZC
    Cell Mol Neurobiol; 2010 Mar; 30(2):275-82. PubMed ID: 19757023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy.
    Jones TB; Basso DM; Sodhi A; Pan JZ; Hart RP; MacCallum RC; Lee S; Whitacre CC; Popovich PG
    J Neurosci; 2002 Apr; 22(7):2690-700. PubMed ID: 11923434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens.
    Hauben E; Ibarra A; Mizrahi T; Barouch R; Agranov E; Schwartz M
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15173-8. PubMed ID: 11752461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using extracellular matrix for regenerative medicine in the spinal cord.
    Volpato FZ; Führmann T; Migliaresi C; Hutmacher DW; Dalton PD
    Biomaterials; 2013 Jul; 34(21):4945-55. PubMed ID: 23597407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced expression of neurotrophic factors in the injured spinal cord through vaccination with myelin basic protein-derived peptide pulsed dendritic cells.
    Wang Y; Li J; Kong P; Zhao S; Yang H; Chen C; Yan J
    Spine (Phila Pa 1976); 2015 Jan; 40(2):95-101. PubMed ID: 25569526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoietin-mediated preservation of the white matter in rat spinal cord injury.
    Vitellaro-Zuccarello L; Mazzetti S; Madaschi L; Bosisio P; Gorio A; De Biasi S
    Neuroscience; 2007 Feb; 144(3):865-77. PubMed ID: 17141961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of immunotherapy with high-dose glatiramer acetate in acute phase of spinal cord injury in rats.
    Askarifirouzjaei H; Khajoueinejad L; Salek Farrokhi A; Tahoori MT; Fazeli M; Tiraihi T; Pourfathollah AA
    Immunopharmacol Immunotoxicol; 2019 Feb; 41(1):150-162. PubMed ID: 31038378
    [No Abstract]   [Full Text] [Related]  

  • 16. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention.
    Hayta E; Elden H
    J Chem Neuroanat; 2018 Jan; 87():25-31. PubMed ID: 28803968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuregulin-1 elicits a regulatory immune response following traumatic spinal cord injury.
    Alizadeh A; Santhosh KT; Kataria H; Gounni AS; Karimi-Abdolrezaee S
    J Neuroinflammation; 2018 Feb; 15(1):53. PubMed ID: 29467001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation.
    Mukaino M; Nakamura M; Yamada O; Okada S; Morikawa S; Renault-Mihara F; Iwanami A; Ikegami T; Ohsugi Y; Tsuji O; Katoh H; Matsuzaki Y; Toyama Y; Liu M; Okano H
    Exp Neurol; 2010 Aug; 224(2):403-14. PubMed ID: 20478301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of autoimmunity on recovery of function in adult rats following spinal cord injury.
    Lü HZ; Xu L; Zou J; Wang YX; Ma ZW; Xu XM; Lu PH
    Brain Behav Immun; 2008 Nov; 22(8):1217-30. PubMed ID: 18625299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.