These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25860349)

  • 1. Numerical Study on Droplet Sliding across Micropillars.
    Wang Y; Chen S
    Langmuir; 2015 Apr; 31(16):4673-7. PubMed ID: 25860349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Sliding: The Numerical Observation of Multiple Contact Angle Hysteresis.
    Wang Y; Zhao J; Zhang D; Jian M; Liu H; Zhang X
    Langmuir; 2019 Jul; 35(30):9970-9978. PubMed ID: 31295001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Wetting: Droplet Receding Contact Angles on Soft Superhydrophobic Surfaces.
    Jiang Y; Xu Z; Li B; Li J; Guan D
    Langmuir; 2023 Oct; 39(43):15401-15408. PubMed ID: 37857566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method.
    Wang L; Huang HB; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013301. PubMed ID: 23410454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study.
    Li H; Yan T; Fichthorn KA; Yu S
    Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravitational Effect on the Advancing and Receding Angles of a Two-Dimensional Cassie-Baxter Droplet on a Textured Surface.
    Kim D; Jeong M; Kang K; Ryu S
    Langmuir; 2020 Jun; 36(21):6061-6069. PubMed ID: 32370510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Following or Against Topographic Wettability Gradient: Movements of Droplets on a Micropatterned Surface.
    Zhao J; Chen S
    Langmuir; 2017 May; 33(21):5328-5335. PubMed ID: 28485943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces.
    Li H; Yan T; Fichthorn KA
    Langmuir; 2020 Aug; 36(33):9916-9925. PubMed ID: 32787051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure.
    Kuchin I; Starov V
    Langmuir; 2015 May; 31(19):5345-52. PubMed ID: 25901520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic behavior of water droplets on solid surfaces with pillar-type nanostructures.
    Jeong WJ; Ha MY; Yoon HS; Ambrosia M
    Langmuir; 2012 Mar; 28(12):5360-71. PubMed ID: 22385413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sliding of water droplets on microstructured hydrophobic surfaces.
    Lv C; Yang C; Hao P; He F; Zheng Q
    Langmuir; 2010 Jun; 26(11):8704-8. PubMed ID: 20205409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sliding of water droplets on hydrophobic surfaces with various hydrophilic region sizes.
    Furuta T; Sakai M; Isobe T; Matsushita S; Nakajima A
    Langmuir; 2011 Jun; 27(11):7307-13. PubMed ID: 21526812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles.
    Liang Ling WY; Ng TW; Neild A; Zheng Q
    J Colloid Interface Sci; 2011 Feb; 354(2):832-42. PubMed ID: 21146828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.