These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25860698)

  • 21. Investigation of the impacts of thermal pretreatment on waste activated sludge and development of a pretreatment model.
    Burger G; Parker W
    Water Res; 2013 Sep; 47(14):5245-56. PubMed ID: 23850212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.
    Karahan O; van Loosdrecht MC; Orhon D
    Biotechnol Bioeng; 2006 May; 94(1):43-53. PubMed ID: 16570312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overcoming floc formation limitations in high-rate activated sludge systems.
    Van Winckel T; Liu X; Vlaeminck SE; Takács I; Al-Omari A; Sturm B; Kjellerup BV; Murthy SN; De Clippeleir H
    Chemosphere; 2019 Jan; 215():342-352. PubMed ID: 30326440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating organic nitrogen production in activated sludge process: Size fraction and biodegradability.
    Joshi R; Kasi M; Wadhawan T; Khan E
    Sci Total Environ; 2021 Jun; 773():145695. PubMed ID: 33940763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrometric characterization of effluent organic matter of a sequencing batch reactor operated at three sludge retention times.
    Esparza-Soto M; Núñez-Hernández S; Fall C
    Water Res; 2011 Dec; 45(19):6555-63. PubMed ID: 22018699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances.
    Wilén BM; Jin B; Lant P
    Water Sci Technol; 2003; 47(12):95-103. PubMed ID: 12926675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-stage UASB design enables activated-sludge free treatment of easily biodegradable wastewater.
    Diamantis V; Aivasidis A
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):287-92. PubMed ID: 19418073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wastewater COD characterization: biodegradability of physico-chemical fractions.
    Ginestet P; Maisonnier A; Spérandio M
    Water Sci Technol; 2002; 45(6):89-97. PubMed ID: 11989881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sludge floc characteristics and microbial community in high-rate activated sludge and high-rate membrane bioreactor for organic recovery.
    Homyok P; Rongsayamanont C; Wongkiew S; Limpiyakorn T
    Sci Total Environ; 2024 Jan; 906():167387. PubMed ID: 37777134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems.
    Drewnowski J; Makinia J
    Water Sci Technol; 2013; 67(9):2067-74. PubMed ID: 23656951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scientific basis for the design of small activated sludge systems.
    Orhon D; Karahan-Gül O; Sözen SI; Artan N
    Water Sci Technol; 2003; 48(11-12):15-22. PubMed ID: 14753514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge.
    Isazadeh S; Feng M; Urbina Rivas LE; Frigon D
    J Hazard Mater; 2014 Apr; 270():160-8. PubMed ID: 24572272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward a novel membrane process for organic carbon removal-fate of slowly biodegradable substrate in super fast membrane bioreactor.
    Sözen S; Teksoy Başaran S; Akarsubaşı A; Ergal I; Insel G; Karaca C; Orhon D
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16230-40. PubMed ID: 27154840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Flocculation characteristics of the return sludge in chemical-biological flocculation process].
    Zhang ZB; Zhao JF; Xia SQ; Zhang XY; Yin MM; Wang XJ; Wang RC
    Huan Jing Ke Xue; 2009 Mar; 30(3):840-4. PubMed ID: 19432338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerobic and anaerobic bioprocessing of activated sludge: floc disintegration by enzymes.
    Ayol A; Filibeli A; Sir D; Kuzyaka E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Nov; 43(13):1528-35. PubMed ID: 18821239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon capture for blackwater: chemical enhanced high-rate activated sludge process.
    Jiang H; Tang X; Wen Y; He Y; Chen H
    Water Sci Technol; 2019 Oct; 80(8):1494-1504. PubMed ID: 31961812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Activated sludge model based COD fractionation in wastewater characterization].
    Zhou Z; Wu ZC; Wang ZW; Tang SJ; Gu GW
    Huan Jing Ke Xue; 2010 Jun; 31(6):1478-82. PubMed ID: 20698259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling.
    Huang Z; Ong SL; Ng HY
    Water Res; 2011 Jan; 45(2):705-13. PubMed ID: 20851448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge.
    Wahidunnabi AK; Eskicioglu C
    Water Res; 2014 Dec; 66():430-446. PubMed ID: 25243656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.
    Li X; Peng Y; He Y; Wang S; Guo S; Li L
    Bioresour Technol; 2017 Mar; 227():398-403. PubMed ID: 28041777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.