These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25860743)

  • 21. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulsed laser cooling for cavity optomechanical resonators.
    Machnes S; Cerrillo J; Aspelmeyer M; Wieczorek W; Plenio MB; Retzker A
    Phys Rev Lett; 2012 Apr; 108(15):153601. PubMed ID: 22587250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum.
    Conangla GP; Schell AW; Rica RA; Quidant R
    Nano Lett; 2018 Jun; 18(6):3956-3961. PubMed ID: 29772171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A; Mackowski JM; Michel C; Pinard L; Français O; Rousseau L
    Phys Rev Lett; 2006 Sep; 97(13):133601. PubMed ID: 17026032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ground-state cooling of a single atom at the center of an optical cavity.
    Reiserer A; Nölleke C; Ritter S; Rempe G
    Phys Rev Lett; 2013 May; 110(22):223003. PubMed ID: 23767719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cavity-Based 3D Cooling of a Levitated Nanoparticle via Coherent Scattering.
    Windey D; Gonzalez-Ballestero C; Maurer P; Novotny L; Romero-Isart O; Reimann R
    Phys Rev Lett; 2019 Mar; 122(12):123601. PubMed ID: 30978044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiation-pressure cooling and optomechanical instability of a micromirror.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A
    Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging-based feedback cooling of a levitated nanoparticle.
    Minowa Y; Kato K; Ueno S; Penny TW; Pontin A; Ashida M; Barker PF
    Rev Sci Instrum; 2022 Jul; 93(7):075109. PubMed ID: 35922321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong optomechanical coupling at room temperature by coherent scattering.
    de Los Ríos Sommer A; Meyer N; Quidant R
    Nat Commun; 2021 Jan; 12(1):276. PubMed ID: 33436586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cavity cooling of a single atom.
    Maunz P; Puppe T; Schuster I; Syassen N; Pinkse PW; Rempe G
    Nature; 2004 Mar; 428(6978):50-2. PubMed ID: 14999275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems.
    Cotrufo M; Fiore A; Verhagen E
    Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motional Sideband Asymmetry of a Nanoparticle Optically Levitated in Free Space.
    Tebbenjohanns F; Frimmer M; Jain V; Windey D; Novotny L
    Phys Rev Lett; 2020 Jan; 124(1):013603. PubMed ID: 31976693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ground-state cooling for a trapped atom using cavity-induced double electromagnetically induced transparency.
    Yi Z; Gu WJ; Li GX
    Opt Express; 2013 Feb; 21(3):3445-62. PubMed ID: 23481803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optomechanics with levitated particles.
    Millen J; Monteiro TS; Pettit R; Vamivakas AN
    Rep Prog Phys; 2020 Feb; 83(2):026401. PubMed ID: 31825901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intensive Cavity-Magnomechanical Cooling of a Levitated Macromagnet.
    Kani A; Sarma B; Twamley J
    Phys Rev Lett; 2022 Jan; 128(1):013602. PubMed ID: 35061494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolved-Sideband Cooling of a Levitated Nanoparticle in the Presence of Laser Phase Noise.
    Meyer N; Sommer ALR; Mestres P; Gieseler J; Jain V; Novotny L; Quidant R
    Phys Rev Lett; 2019 Oct; 123(15):153601. PubMed ID: 31702279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.
    Cozijn FM; Biesheuvel J; Flores AS; Ubachs W; Blume G; Wicht A; Paschke K; Erbert G; Koelemeij JC
    Opt Lett; 2013 Jul; 38(13):2370-2. PubMed ID: 23811931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Levitodynamics: Levitation and control of microscopic objects in vacuum.
    Gonzalez-Ballestero C; Aspelmeyer M; Novotny L; Quidant R; Romero-Isart O
    Science; 2021 Oct; 374(6564):eabg3027. PubMed ID: 34618558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated fiber-mirror ion trap for strong ion-cavity coupling.
    Brandstätter B; McClung A; Schüppert K; Casabone B; Friebe K; Stute A; Schmidt PO; Deutsch C; Reichel J; Blatt R; Northup TE
    Rev Sci Instrum; 2013 Dec; 84(12):123104. PubMed ID: 24387417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High finesse opto-mechanical cavity with a movable thirty-micron-size mirror.
    Kleckner D; Marshall W; de Dood MJ; Dinyari KN; Pors BJ; Irvine WT; Bouwmeester D
    Phys Rev Lett; 2006 May; 96(17):173901. PubMed ID: 16712296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.