These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25860743)

  • 41. State-insensitive cooling and trapping of single atoms in an optical cavity.
    McKeever J; Buck JR; Boozer AD; Kuzmich A; Nägerl HC; Stamper-Kurn DM; Kimble HJ
    Phys Rev Lett; 2003 Apr; 90(13):133602. PubMed ID: 12689287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deterministic loading of individual atoms to a high-finesse optical cavity.
    Fortier KM; Kim SY; Gibbons MJ; Ahmadi P; Chapman MS
    Phys Rev Lett; 2007 Jun; 98(23):233601. PubMed ID: 17677905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast size estimation of single-levitated nanoparticles in a vacuum optomechanical system.
    Li CH; Jing J; Zhou LM; Fu ZH; Gao XW; Li N; Chen XF; Hu HZ
    Opt Lett; 2021 Sep; 46(18):4614-4617. PubMed ID: 34525061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of ion micromotion in a linear Paul trap with a high finesse cavity.
    Chuah BL; Lewty NC; Cazan R; Barrett MD
    Opt Express; 2013 May; 21(9):10632-41. PubMed ID: 23669919
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimized Multi-Ion Cavity Coupling.
    Begley S; Vogt M; Gulati GK; Takahashi H; Keller M
    Phys Rev Lett; 2016 Jun; 116(22):223001. PubMed ID: 27314716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct Measurement of Photon Recoil from a Levitated Nanoparticle.
    Jain V; Gieseler J; Moritz C; Dellago C; Quidant R; Novotny L
    Phys Rev Lett; 2016 Jun; 116(24):243601. PubMed ID: 27367388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporal rocking in a nonlinear hybrid optomechanical system.
    Zhang X; Sheng J; Wu H
    Opt Express; 2018 Mar; 26(5):6285-6293. PubMed ID: 29529820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble.
    Zeng W; Nie W; Li L; Chen A
    Sci Rep; 2017 Dec; 7(1):17258. PubMed ID: 29222484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Apr; 6():24421. PubMed ID: 27091072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cavity cooling of a microlever.
    Metzger CH; Karrai K
    Nature; 2004 Dec; 432(7020):1002-5. PubMed ID: 15616555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optomechanical cavity cooling of an atomic ensemble.
    Schleier-Smith MH; Leroux ID; Zhang H; Van Camp MA; Vuletić V
    Phys Rev Lett; 2011 Sep; 107(14):143005. PubMed ID: 22107191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cryogenic linear Paul trap for cold highly charged ion experiments.
    Schwarz M; Versolato OO; Windberger A; Brunner FR; Ballance T; Eberle SN; Ullrich J; Schmidt PO; Hansen AK; Gingell AD; Drewsen M; López-Urrutia JR
    Rev Sci Instrum; 2012 Aug; 83(8):083115. PubMed ID: 22938282
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle.
    Gieseler J; Deutsch B; Quidant R; Novotny L
    Phys Rev Lett; 2012 Sep; 109(10):103603. PubMed ID: 23005289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities.
    Li Y; Zheng J; Gao J; Shu J; Aras MS; Wong CW
    Opt Express; 2010 Nov; 18(23):23844-56. PubMed ID: 21164729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.
    Thompson JD; Zwickl BM; Jayich AM; Marquardt F; Girvin SM; Harris JG
    Nature; 2008 Mar; 452(7183):72-5. PubMed ID: 18322530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions.
    Leopold T; King SA; Micke P; Bautista-Salvador A; Heip JC; Ospelkaus C; Crespo López-Urrutia JR; Schmidt PO
    Rev Sci Instrum; 2019 Jul; 90(7):073201. PubMed ID: 31370455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum theory of cavity-assisted sideband cooling of mechanical motion.
    Marquardt F; Chen JP; Clerk AA; Girvin SM
    Phys Rev Lett; 2007 Aug; 99(9):093902. PubMed ID: 17931006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Position Measurement of a Levitated Nanoparticle via Interference with Its Mirror Image.
    Dania L; Heidegger K; Bykov DS; Cerchiari G; Araneda G; Northup TE
    Phys Rev Lett; 2022 Jul; 129(1):013601. PubMed ID: 35841571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micro-fabricated stylus ion trap.
    Arrington CL; McKay KS; Baca ED; Coleman JJ; Colombe Y; Finnegan P; Hite DA; Hollowell AE; Jördens R; Jost JD; Leibfried D; Rowen AM; Warring U; Weides M; Wilson AC; Wineland DJ; Pappas DP
    Rev Sci Instrum; 2013 Aug; 84(8):085001. PubMed ID: 24007096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.