These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25860748)

  • 1. Multibeam seeded brillouin sidescatter in inertial confinement fusion experiments.
    Turnbull D; Michel P; Ralph JE; Divol L; Ross JS; Berzak Hopkins LF; Kritcher AL; Hinkel DE; Moody JD
    Phys Rev Lett; 2015 Mar; 114(12):125001. PubMed ID: 25860748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.
    Michel P; Divol L; Dewald EL; Milovich JL; Hohenberger M; Jones OS; Hopkins LB; Berger RL; Kruer WL; Moody JD
    Phys Rev Lett; 2015 Jul; 115(5):055003. PubMed ID: 26274426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility.
    Marozas JA; Hohenberger M; Rosenberg MJ; Turnbull D; Collins TJB; Radha PB; McKenty PW; Zuegel JD; Marshall FJ; Regan SP; Sangster TC; Seka W; Campbell EM; Goncharov VN; Bowers MW; Di Nicola JG; Erbert G; MacGowan BJ; Pelz LJ; Yang ST
    Phys Rev Lett; 2018 Feb; 120(8):085001. PubMed ID: 29543010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Evidence of the Collective Brillouin Scattering of Multiple Laser Beams Sharing Acoustic Waves.
    Neuville C; Tassin V; Pesme D; Monteil MC; Masson-Laborde PE; Baccou C; Fremerye P; Philippe F; Seytor P; Teychenné D; Seka W; Katz J; Bahr R; Depierreux S
    Phys Rev Lett; 2016 Jun; 116(23):235002. PubMed ID: 27341238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Scattered Light Time-history Diagnostic suite at the National Ignition Facility.
    Rosenberg MJ; Hernandez JE; Butler N; Filkins T; Bahr RE; Jungquist RK; Bedzyk M; Swadling G; Ross JS; Michel P; Lemos N; Eichmiller J; Sommers R; Nyholm P; Boni R; Marozas JA; Craxton RS; McKenty PW; Sharma A; Radha PB; Froula DH; Datte P; Gorman M; Moody JD; Heinmiller JM; Fornes J; Hillyard P; Regan SP
    Rev Sci Instrum; 2021 Mar; 92(3):033511. PubMed ID: 33820108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolate-spheroid ("rugby-shaped") hohlraum for inertial confinement fusion.
    Vandenboomgaerde M; Bastian J; Casner A; Galmiche D; Jadaud JP; Laffite S; Liberatore S; Malinie G; Philippe F
    Phys Rev Lett; 2007 Aug; 99(6):065004. PubMed ID: 17930838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.
    Rosenberg MJ; Solodov AA; Myatt JF; Seka W; Michel P; Hohenberger M; Short RW; Epstein R; Regan SP; Campbell EM; Chapman T; Goyon C; Ralph JE; Barrios MA; Moody JD; Bates JW
    Phys Rev Lett; 2018 Feb; 120(5):055001. PubMed ID: 29481170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss.
    Rosen MD; Hammer JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056403. PubMed ID: 16383762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.
    Hu SX; Collins LA; Boehly TR; Kress JD; Goncharov VN; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043105. PubMed ID: 24827353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums.
    Glenzer SH; MacGowan BJ; Meezan NB; Adams PA; Alfonso JB; Alger ET; Alherz Z; Alvarez LF; Alvarez SS; Amick PV; Andersson KS; Andrews SD; Antonini GJ; Arnold PA; Atkinson DP; Auyang L; Azevedo SG; Balaoing BN; Baltz JA; Barbosa F; Bardsley GW; Barker DA; Barnes AI; Baron A; Beeler RG; Beeman BV; Belk LR; Bell JC; Bell PM; Berger RL; Bergonia MA; Bernardez LJ; Berzins LV; Bettenhausen RC; Bezerides L; Bhandarkar SD; Bishop CL; Bond EJ; Bopp DR; Borgman JA; Bower JR; Bowers GA; Bowers MW; Boyle DT; Bradley DK; Bragg JL; Braucht J; Brinkerhoff DL; Browning DF; Brunton GK; Burkhart SC; Burns SR; Burns KE; Burr B; Burrows LM; Butlin RK; Cahayag NJ; Callahan DA; Cardinale PS; Carey RW; Carlson JW; Casey AD; Castro C; Celeste JR; Chakicherla AY; Chambers FW; Chan C; Chandrasekaran H; Chang C; Chapman RF; Charron K; Chen Y; Christensen MJ; Churby AJ; Clancy TJ; Cline BD; Clowdus LC; Cocherell DG; Coffield FE; Cohen SJ; Costa RL; Cox JR; Curnow GM; Dailey MJ; Danforth PM; Darbee R; Datte PS; Davis JA; Deis GA; Demaret RD; Dewald EL; Di Nicola P; Di Nicola JM; Divol L; Dixit S; Dobson DB; Doppner T; Driscoll JD; Dugorepec J; Duncan JJ; Dupuy PC; Dzenitis EG; Eckart MJ; Edson SL; Edwards GJ; Edwards MJ; Edwards OD; Edwards PW; Ellefson JC; Ellerbee CH; Erbert GV; Estes CM; Fabyan WJ; Fallejo RN; Fedorov M; Felker B; Fink JT; Finney MD; Finnie LF; Fischer MJ; Fisher JM; Fishler BT; Florio JW; Forsman A; Foxworthy CB; Franks RM; Frazier T; Frieder G; Fung T; Gawinski GN; Gibson CR; Giraldez E; Glenn SM; Golick BP; Gonzales H; Gonzales SA; Gonzalez MJ; Griffin KL; Grippen J; Gross SM; Gschweng PH; Gururangan G; Gu K; Haan SW; Hahn SR; Haid BJ; Hamblen JE; Hammel BA; Hamza AV; Hardy DL; Hart DR; Hartley RG; Haynam CA; Heestand GM; Hermann MR; Hermes GL; Hey DS; Hibbard RL; Hicks DG; Hinkel DE; Hipple DL; Hitchcock JD; Hodtwalker DL; Holder JP; Hollis JD; Holtmeier GM; Huber SR; Huey AW; Hulsey DN; Hunter SL; Huppler TR; Hutton MS; Izumi N; Jackson JL; Jackson MA; Jancaitis KS; Jedlovec DR; Johnson B; Johnson MC; Johnson T; Johnston MP; Jones OS; Kalantar DH; Kamperschroer JH; Kauffman RL; Keating GA; Kegelmeyer LM; Kenitzer SL; Kimbrough JR; King K; Kirkwood RK; Klingmann JL; Knittel KM; Kohut TR; Koka KG; Kramer SW; Krammen JE; Krauter KG; Krauter GW; Krieger EK; Kroll JJ; La Fortune KN; Lagin LJ; Lakamsani VK; Landen OL; Lane SW; Langdon AB; Langer SH; Lao N; Larson DW; Latray D; Lau GT; Le Pape S; Lechleiter BL; Lee Y; Lee TL; Li J; Liebman JA; Lindl JD; Locke SF; Loey HK; London RA; Lopez FJ; Lord DM; Lowe-Webb RR; Lown JG; Ludwigsen AP; Lum NW; Lyons RR; Ma T; MacKinnon AJ; Magat MD; Maloy DT; Malsbury TN; Markham G; Marquez RM; Marsh AA; Marshall CD; Marshall SR; Maslennikov IL; Mathisen DG; Mauger GJ; Mauvais M-; McBride JA; McCarville T; McCloud JB; McGrew A; McHale B; MacPhee AG; Meeker JF; Merill JS; Mertens EP; Michel PA; Miller MG; Mills T; Milovich JL; Miramontes R; Montesanti RC; Montoya MM; Moody J; Moody JD; Moreno KA; Morris J; Morriston KM; Nelson JR; Neto M; Neumann JD; Ng E; Ngo QM; Olejniczak BL; Olson RE; Orsi NL; Owens MW; Padilla EH; Pannell TM; Parham TG; Patterson RW; Pavel G; Prasad RR; Pendlton D; Penko FA; Pepmeier BL; Petersen DE; Phillips TW; Pigg D; Piston KW; Pletcher KD; Powell CL; Radousky HB; Raimondi BS; Ralph JE; Rampke RL; Reed RK; Reid WA; Rekow VV; Reynolds JL; Rhodes JJ; Richardson MJ; Rinnert RJ; Riordan BP; Rivenes AS; Rivera AT; Roberts CJ; Robinson JA; Robinson RB; Robison SR; Rodriguez OR; Rogers SP; Rosen MD; Ross GF; Runkel M; Runtal AS; Sacks RA; Sailors SF; Salmon JT; Salmonson JD; Saunders RL; Schaffer JR; Schindler TM; Schmitt MJ; Schneider MB; Segraves KS; Shaw MJ; Sheldrick ME; Shelton RT; Shiflett MK; Shiromizu SJ; Shor M; Silva LL; Silva SA; Skulina KM; Smauley DA; Smith BE; Smith LK; Solomon AL; Sommer S; Soto JG; Spafford NI; Speck DE; Springer PT; Stadermann M; Stanley F; Stone TG; Stout EA; Stratton PL; Strausser RJ; Suter LJ; Sweet W; Swisher MF; Tappero JD; Tassano JB; Taylor JS; Tekle EA; Thai C; Thomas CA; Thomas A; Throop AL; Tietbohl GL; Tillman JM; Town RP; Townsend SL; Tribbey KL; Trummer D; Truong J; Vaher J; Valadez M; Van Arsdall P; Van Prooyen AJ; Vergel de Dios EO; Vergino MD; Vernon SP; Vickers JL; Villanueva GT; Vitalich MA; Vonhof SA; Wade FE; Wallace RJ; Warren CT; Warrick AL; Watkins J; Weaver S; Wegner PJ; Weingart MA; Wen J; White KS; Whitman PK; Widmann K; Widmayer CC; Wilhelmsen K; Williams EA; Williams WH; Willis L; Wilson EF; Wilson BA; Witte MC; Work K; Yang PS; Young BK; Youngblood KP; Zacharias RA; Zaleski T; Zapata PG; Zhang H; Zielinski JS; Kline JL; Kyrala GA; Niemann C; Kilkenny JD; Nikroo A; Van Wonterghem BM; Atherton LJ; Moses EI
    Phys Rev Lett; 2011 Feb; 106(8):085004. PubMed ID: 21405580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multibeam stimulated brillouin scattering from hot, solid-target plasmas.
    Seka W; Baldis HA; Fuchs J; Regan SP; Meyerhofer DD; Stoeckl C; Yaakobi B; Craxton RS; Short RW
    Phys Rev Lett; 2002 Oct; 89(17):175002. PubMed ID: 12398677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments.
    Casner A
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200021. PubMed ID: 33280557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.
    Li Y; Liu X; Li X; Liu Y; Zheng Y; Wang M; Shen H
    Microsc Microanal; 2013 Aug; 19(4):1073-9. PubMed ID: 23702102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multibeam effects on fast-electron generation from two-plasmon-decay instability.
    Stoeckl C; Bahr RE; Yaakobi B; Seka W; Regan SP; Craxton RS; Delettrez JA; Short RW; Myatt J; Maximov AV; Baldis H
    Phys Rev Lett; 2003 Jun; 90(23):235002. PubMed ID: 12857266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial confinement fusion with light ion beams.
    Vandevender JP; Cook DL
    Science; 1986 May; 232(4752):831-6. PubMed ID: 17755963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance.
    Haines BM; Grinstein FF; Fincke JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053302. PubMed ID: 25353910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions.
    Casey DT; Woods DT; Smalyuk VA; Hurricane OA; Glebov VY; Stoeckl C; Theobald W; Wallace R; Nikroo A; Schoff M; Shuldberg C; Wu KJ; Frenje JA; Landen OL; Remington BA; Glendinning G
    Phys Rev Lett; 2015 May; 114(20):205002. PubMed ID: 26047234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions.
    Hu SX; Collins LA; Goncharov VN; Kress JD; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043104. PubMed ID: 26565353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions.
    Aglitskiy Y; Velikovich AL; Karasik M; Metzler N; Zalesak ST; Schmitt AJ; Phillips L; Gardner JH; Serlin V; Weaver JL; Obenschain SP
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1739-68. PubMed ID: 20211882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetric inertial-confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum.
    Bennett GR; Cuneo ME; Vesey RA; Porter JL; Adams RG; Aragon RA; Caird JA; Landen OL; Rambo PK; Rovang DC; Ruggles LE; Simpson WW; Smith IC; Wenger DF
    Phys Rev Lett; 2002 Dec; 89(24):245002. PubMed ID: 12484951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.