These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Short-distance correlation properties of the Lieb-Liniger system and momentum distributions of trapped one-dimensional atomic gases. Olshanii M; Dunjko V Phys Rev Lett; 2003 Aug; 91(9):090401. PubMed ID: 14525162 [TBL] [Abstract][Full Text] [Related]
4. Fermi-bose transformation for the time-dependent Lieb-Liniger gas. Buljan H; Pezer R; Gasenzer T Phys Rev Lett; 2008 Feb; 100(8):080406. PubMed ID: 18352608 [TBL] [Abstract][Full Text] [Related]
5. Dynamical Fermionization in One-Dimensional Spinor Quantum Gases. Alam SS; Skaras T; Yang L; Pu H Phys Rev Lett; 2021 Jul; 127(2):023002. PubMed ID: 34296904 [TBL] [Abstract][Full Text] [Related]
6. Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas. Bernier JS; Citro R; Kollath C; Orignac E Phys Rev Lett; 2014 Feb; 112(6):065301. PubMed ID: 24580691 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional quasi-Tonks gas in a harmonic trap. Pedri P; Santos L Phys Rev Lett; 2003 Sep; 91(11):110401. PubMed ID: 14525405 [TBL] [Abstract][Full Text] [Related]
8. Dynamical Fermionization in One-Dimensional Spinor Gases at Finite Temperature. Pâţu OI Phys Rev Lett; 2023 Apr; 130(16):163201. PubMed ID: 37154640 [TBL] [Abstract][Full Text] [Related]
9. Dynamical transition from a quasi-one-dimensional Bose-Einstein condensate to a Tonks-Girardeau gas. Ohberg P; Santos L Phys Rev Lett; 2002 Dec; 89(24):240402. PubMed ID: 12484933 [TBL] [Abstract][Full Text] [Related]
10. Probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Choi JY; Seo SW; Kwon WJ; Shin YI Phys Rev Lett; 2012 Sep; 109(12):125301. PubMed ID: 23005954 [TBL] [Abstract][Full Text] [Related]
11. Excitation spectrum of the Lieb-Liniger model. Ristivojevic Z Phys Rev Lett; 2014 Jul; 113(1):015301. PubMed ID: 25032930 [TBL] [Abstract][Full Text] [Related]
12. Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas. Ikeda TN; Watanabe Y; Ueda M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012125. PubMed ID: 23410301 [TBL] [Abstract][Full Text] [Related]
13. Probing the Excitations of a Lieb-Liniger Gas from Weak to Strong Coupling. Meinert F; Panfil M; Mark MJ; Lauber K; Caux JS; Nägerl HC Phys Rev Lett; 2015 Aug; 115(8):085301. PubMed ID: 26340191 [TBL] [Abstract][Full Text] [Related]
15. Exact Local Correlations and Full Counting Statistics for Arbitrary States of the One-Dimensional Interacting Bose Gas. Bastianello A; Piroli L; Calabrese P Phys Rev Lett; 2018 May; 120(19):190601. PubMed ID: 29799218 [TBL] [Abstract][Full Text] [Related]
16. Observation of dynamical fermionization. Wilson JM; Malvania N; Le Y; Zhang Y; Rigol M; Weiss DS Science; 2020 Mar; 367(6485):1461-1464. PubMed ID: 32217723 [TBL] [Abstract][Full Text] [Related]
17. Nonadiabatic Energy Fluctuations of Scale-Invariant Quantum Systems in a Time-Dependent Trap. Beau M; Del Campo A Entropy (Basel); 2020 Apr; 22(5):. PubMed ID: 33286287 [TBL] [Abstract][Full Text] [Related]
18. Shortcut to Adiabaticity for an Anisotropic Gas Containing Quantum Defects. Papoular DJ; Stringari S Phys Rev Lett; 2015 Jul; 115(2):025302. PubMed ID: 26207476 [TBL] [Abstract][Full Text] [Related]
19. Relaxation of Phonons in the Lieb-Liniger Gas by Dynamical Refermionization. Bouchoule I; Dubail J; Dubois L; Gangardt DM Phys Rev Lett; 2023 Apr; 130(14):140401. PubMed ID: 37084453 [TBL] [Abstract][Full Text] [Related]
20. Expansion of an interacting fermi gas. Menotti C; Pedri P; Stringari S Phys Rev Lett; 2002 Dec; 89(25):250402. PubMed ID: 12484869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]