BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25860821)

  • 1. Comparison of Explant and Enzyme Digestion Methods for Ex Vivo Isolation of Limbal Epithelial Progenitor Cells.
    Zhang ZH; Liu HY; Liu K; Xu X
    Curr Eye Res; 2016; 41(3):318-25. PubMed ID: 25860821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells.
    Loureiro RR; Cristovam PC; Martins CM; Covre JL; Sobrinho JA; Ricardo JR; Hazarbassanov RM; Höfling-Lima AL; Belfort R; Nishi M; Gomes JÁ
    Mol Vis; 2013; 19():69-77. PubMed ID: 23378720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.
    Szabó DJ; Noer A; Nagymihály R; Josifovska N; Andjelic S; Veréb Z; Facskó A; Moe MC; Petrovski G
    PLoS One; 2015; 10(11):e0143053. PubMed ID: 26580800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane.
    Li W; Hayashida Y; He H; Kuo CL; Tseng SC
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):605-13. PubMed ID: 17251456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.
    Ghoubay-Benallaoua D; de Sousa C; Martos R; Latour G; Schanne-Klein MC; Dupin E; Borderie V
    PLoS One; 2017; 12(11):e0188398. PubMed ID: 29149196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface.
    Mathan JJ; Ismail S; McGhee JJ; McGhee CN; Sherwin T
    Stem Cell Res Ther; 2016 Jun; 7(1):81. PubMed ID: 27250558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane.
    Du Y; Chen J; Funderburgh JL; Zhu X; Li L
    Mol Vis; 2003 Dec; 9():635-43. PubMed ID: 14685149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures.
    Kim HS; Jun Song X; de Paiva CS; Chen Z; Pflugfelder SC; Li DQ
    Exp Eye Res; 2004 Jul; 79(1):41-9. PubMed ID: 15183099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence.
    Chang CY; Green CR; McGhee CN; Sherwin T
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5279-86. PubMed ID: 18515566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of limbal basal epithelial progenitor cells.
    Hayashida Y; Li W; Chen YT; He H; Chen SY; Kheirkah A; Zhu YT; Matsumoto Y; Tseng SC
    Cornea; 2010 Nov; 29 Suppl 1():S32-40. PubMed ID: 20935540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ex vivo expanded SSEA-4+ human limbal stromal cells are multipotent and do not express other embryonic stem cell markers.
    Lim MN; Hussin NH; Othman A; Umapathy T; Baharuddin P; Jamal R; Zakaria Z
    Mol Vis; 2012; 18():1289-300. PubMed ID: 22665977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium.
    Chang CY; McGhee JJ; Green CR; Sherwin T
    Cornea; 2011 Oct; 30(10):1155-62. PubMed ID: 21849892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of corneas following different time and storage methods for their use as a source of stem-like limbal epithelial cells.
    Romo-Valera C; Pérez-Garrastachu M; Hernáez-Moya R; Rodriguez-Astigarraga M; Romano-Ruiz P; Etxebarria J; Arluzea J; Andollo N
    Exp Eye Res; 2021 Oct; 211():108720. PubMed ID: 34389315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Notch-1 expression in the limbal basal epithelium.
    Thomas PB; Liu YH; Zhuang FF; Selvam S; Song SW; Smith RE; Trousdale MD; Yiu SC
    Mol Vis; 2007 Mar; 13():337-44. PubMed ID: 17392684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation of the limbal stem cell phenotype by appropriate culture techniques.
    Meyer-Blazejewska EA; Kruse FE; Bitterer K; Meyer C; Hofmann-Rummelt C; Wünsch PH; Schlötzer-Schrehardt U
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):765-74. PubMed ID: 19710417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of culture conditions for an efficient xeno-feeder free limbal cell culture system towards ocular surface regeneration.
    Varghese VM; Prasad T; Kumary TV
    Microsc Res Tech; 2010 Oct; 73(11):1045-52. PubMed ID: 20196106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture.
    Koizumi N; Cooper LJ; Fullwood NJ; Nakamura T; Inoki K; Tsuzuki M; Kinoshita S
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2114-21. PubMed ID: 12091405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human aniridia limbal epithelial cells lack expression of keratins K3 and K12.
    Latta L; Viestenz A; Stachon T; Colanesi S; Szentmáry N; Seitz B; Käsmann-Kellner B
    Exp Eye Res; 2018 Feb; 167():100-109. PubMed ID: 29162348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Existence of small slow-cycling Langerhans cells in the limbal basal epithelium that express ABCG2.
    Chen W; Hara K; Tian Q; Zhao K; Yoshitomi T
    Exp Eye Res; 2007 Apr; 84(4):626-34. PubMed ID: 17254566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High expression of p63 combined with a large N/C ratio defines a subset of human limbal epithelial cells: implications on epithelial stem cells.
    Arpitha P; Prajna NV; Srinivasan M; Muthukkaruppan V
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3631-6. PubMed ID: 16186343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.