These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels. Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207 [TBL] [Abstract][Full Text] [Related]
3. Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment. Shimazu Y; Zhang B; Yue Z; Wallace GG; Fukuda J J Biosci Bioeng; 2019 Jan; 127(1):114-120. PubMed ID: 30072116 [TBL] [Abstract][Full Text] [Related]
4. Tissue engineering based on electrochemical desorption of an RGD-containing oligopeptide. Mochizuki N; Kakegawa T; Osaki T; Sadr N; Kachouie NN; Suzuki H; Fukuda J J Tissue Eng Regen Med; 2013 Mar; 7(3):236-43. PubMed ID: 22162306 [TBL] [Abstract][Full Text] [Related]
5. Engineering of capillary-like structures in tissue constructs by electrochemical detachment of cells. Seto Y; Inaba R; Okuyama T; Sassa F; Suzuki H; Fukuda J Biomaterials; 2010 Mar; 31(8):2209-15. PubMed ID: 20022631 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of perfusable vasculatures by using micromolding and electrochemical cell transfer. Osaki T; Kakegawa T; Mochizuki N; Fukuda J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6655-8. PubMed ID: 24111269 [TBL] [Abstract][Full Text] [Related]
7. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Nashimoto Y; Hayashi T; Kunita I; Nakamasu A; Torisawa YS; Nakayama M; Takigawa-Imamura H; Kotera H; Nishiyama K; Miura T; Yokokawa R Integr Biol (Camb); 2017 Jun; 9(6):506-518. PubMed ID: 28561127 [TBL] [Abstract][Full Text] [Related]
8. Elomaa L; Lindner M; Leben R; Niesner R; Weinhart M Biofabrication; 2022 Oct; 15(1):. PubMed ID: 36300786 [TBL] [Abstract][Full Text] [Related]
10. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498 [TBL] [Abstract][Full Text] [Related]
11. Generation of functional human vascular network. Takebe T; Koike N; Sekine K; Enomura M; Chiba Y; Ueno Y; Zheng YW; Taniguchi H Transplant Proc; 2012 May; 44(4):1130-3. PubMed ID: 22564644 [TBL] [Abstract][Full Text] [Related]
12. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. Sieminski AL; Hebbel RP; Gooch KJ Tissue Eng; 2005; 11(9-10):1332-45. PubMed ID: 16259589 [TBL] [Abstract][Full Text] [Related]
13. Engineering of functional, perfusable 3D microvascular networks on a chip. Kim S; Lee H; Chung M; Jeon NL Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068 [TBL] [Abstract][Full Text] [Related]
14. Human adipose-derived stem cells enhance the angiogenic potential of endothelial progenitor cells, but not of human umbilical vein endothelial cells. Strassburg S; Nienhueser H; Stark GB; Finkenzeller G; Torio-Padron N Tissue Eng Part A; 2013 Jan; 19(1-2):166-74. PubMed ID: 22871242 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineering: Blood vessels on a chip. Franco C; Gerhardt H Nature; 2012 Aug; 488(7412):465-6. PubMed ID: 22914159 [No Abstract] [Full Text] [Related]
16. Fabrication of endothelialized tube in collagen gel as starting point for self-developing capillary-like network to construct three-dimensional organs in vitro. Takei T; Sakai S; Ono T; Ijima H; Kawakami K Biotechnol Bioeng; 2006 Sep; 95(1):1-7. PubMed ID: 16604522 [TBL] [Abstract][Full Text] [Related]
17. Controlling shape and position of vascular formation in engineered tissues by arbitrary assembly of endothelial cells. Takehara H; Sakaguchi K; Kuroda M; Muraoka M; Itoga K; Okano T; Shimizu T Biofabrication; 2015 Nov; 7(4):045006. PubMed ID: 26545138 [TBL] [Abstract][Full Text] [Related]
18. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Sadr N; Zhu M; Osaki T; Kakegawa T; Yang Y; Moretti M; Fukuda J; Khademhosseini A Biomaterials; 2011 Oct; 32(30):7479-90. PubMed ID: 21802723 [TBL] [Abstract][Full Text] [Related]
19. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. He S; Xia T; Wang H; Wei L; Luo X; Li X Acta Biomater; 2012 Jul; 8(7):2659-69. PubMed ID: 22484697 [TBL] [Abstract][Full Text] [Related]
20. Protein kinase C and downstream signaling pathways in a three-dimensional model of phorbol ester-induced angiogenesis. Taylor CJ; Motamed K; Lilly B Angiogenesis; 2006; 9(2):39-51. PubMed ID: 16607569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]