These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25860941)

  • 1. Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths.
    Sreenivasa M; Mombaur K; Laumond JP
    PLoS One; 2015; 10(4):e0121714. PubMed ID: 25860941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homing by path integration when a locomotion trajectory crosses itself.
    Yamamoto N; Meléndez JA; Menzies DT
    Perception; 2014; 43(10):1049-60. PubMed ID: 25509682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
    Glasauer S; Amorim MA; Viaud-Delmon I; Berthoz A
    Exp Brain Res; 2002 Aug; 145(4):489-97. PubMed ID: 12172660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion.
    Hollands MA; Patla AE; Vickers JN
    Exp Brain Res; 2002 Mar; 143(2):221-30. PubMed ID: 11880898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?
    Chardenon A; Montagne G; Laurent M; Bootsma RJ
    Exp Brain Res; 2004 Sep; 158(1):100-8. PubMed ID: 15042262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking, looking to the side, and taking curved paths.
    Cutting JE; Readinger WO; Wang RF
    Percept Psychophys; 2002 Apr; 64(3):415-25. PubMed ID: 12049282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behaviour.
    Hicheur H; Pham QC; Arechavaleta G; Laumond JP; Berthoz A
    Eur J Neurosci; 2007 Oct; 26(8):2376-90. PubMed ID: 17953625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-stroke visual neglect affects goal-directed locomotion in different perceptuo-cognitive conditions and on a wide visual spectrum.
    Ogourtsova T; Archambault PS; Lamontagne A
    Restor Neurol Neurosci; 2018; 36(3):313-331. PubMed ID: 29782328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choosing efficient actions: Deciding where to walk.
    Linkenauger SA; Weser V; Proffitt DR
    PLoS One; 2019; 14(9):e0219729. PubMed ID: 31557187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related differences in processes organizing goal-directed locomotion toward emotional pictures.
    Vernazza-Martin S; Fautrelle L; Vieillard S; Longuet S; Dru V
    Neuroscience; 2017 Jan; 340():455-463. PubMed ID: 27865866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When locomotion is used to interact with the environment: investigation of the link between emotions and the twofold goal-directed locomotion in humans.
    Vernazza-Martin S; Longuet S; Damry T; Chamot JM; Dru V
    Exp Brain Res; 2015 Oct; 233(10):2913-24. PubMed ID: 26126802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions.
    Mou W; Zhang L
    Cognition; 2014 Dec; 133(3):553-71. PubMed ID: 25215931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optic-flow and egocentric-direction strategies in walking: central vs peripheral visual field.
    Turano KA; Yu D; Hao L; Hicks JC
    Vision Res; 2005 Nov; 45(25-26):3117-32. PubMed ID: 16084556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour and gaze analyses during a goal-directed locomotor task.
    Cinelli ME; Patla AE; Allard F
    Q J Exp Psychol (Hove); 2009 Mar; 62(3):483-99. PubMed ID: 18618377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Route selection in barrier avoidance.
    Baxter BA; Warren WH
    Gait Posture; 2020 Jul; 80():192-198. PubMed ID: 32526616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the passability of apertures change when walking through human versus pole obstacles?
    Hackney AL; Cinelli ME; Frank JS
    Acta Psychol (Amst); 2015 Nov; 162():62-8. PubMed ID: 26529484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head orientation and trajectory of locomotion during jumping and walking in domestic chicks.
    Green PR
    Brain Behav Evol; 1998; 51(1):48-58. PubMed ID: 9435971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified energy-optimality criterion predicts human navigation paths and speeds.
    Brown GL; Seethapathi N; Srinivasan M
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.