These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25860951)
1. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide. Miao Y; Yang J; Xu Z; Jing L; Zhao S; Li X Int J Mol Sci; 2015 Apr; 16(4):7976-94. PubMed ID: 25860951 [TBL] [Abstract][Full Text] [Related]
2. miRNA transcriptome of hypertrophic skeletal muscle with overexpressed myostatin propeptide. Javed R; Jing L; Yang J; Li X; Cao J; Zhao S Biomed Res Int; 2014; 2014():328935. PubMed ID: 25147795 [TBL] [Abstract][Full Text] [Related]
3. Myostatin deficiency but not anti-myostatin blockade induces marked proteomic changes in mouse skeletal muscle. Salzler RR; Shah D; Doré A; Bauerlein R; Miloscio L; Latres E; Papadopoulos NJ; Olson WC; MacDonald D; Duan X Proteomics; 2016 Jul; 16(14):2019-27. PubMed ID: 27214824 [TBL] [Abstract][Full Text] [Related]
4. An integrated analysis of mRNA and miRNA in skeletal muscle from myostatin-edited Meishan pigs. Xie S; Li X; Qian L; Cai C; Xiao G; Jiang S; Li B; Gao T; Cui W Genome; 2019 May; 62(5):305-315. PubMed ID: 30913397 [TBL] [Abstract][Full Text] [Related]
5. Coordinated patterns of gene expressions for adult muscle build-up in transgenic mice expressing myostatin propeptide. Zhao B; Li EJ; Wall RJ; Yang J BMC Genomics; 2009 Jul; 10():305. PubMed ID: 19586544 [TBL] [Abstract][Full Text] [Related]
6. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. Barbé C; Bray F; Gueugneau M; Devassine S; Lause P; Tokarski C; Rolando C; Thissen JP J Proteome Res; 2017 Oct; 16(10):3477-3490. PubMed ID: 28810121 [TBL] [Abstract][Full Text] [Related]
7. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. Hennebry A; Oldham J; Shavlakadze T; Grounds MD; Sheard P; Fiorotto ML; Falconer S; Smith HK; Berry C; Jeanplong F; Bracegirdle J; Matthews K; Nicholas G; Senna-Salerno M; Watson T; McMahon CD J Endocrinol; 2017 Aug; 234(2):187-200. PubMed ID: 28533420 [TBL] [Abstract][Full Text] [Related]
8. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Gilson H; Schakman O; Kalista S; Lause P; Tsuchida K; Thissen JP Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E157-64. PubMed ID: 19435857 [TBL] [Abstract][Full Text] [Related]
9. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. You JS; Lincoln HC; Kim CR; Frey JW; Goodman CA; Zhong XP; Hornberger TA J Biol Chem; 2014 Jan; 289(3):1551-63. PubMed ID: 24302719 [TBL] [Abstract][Full Text] [Related]
10. Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway. Choi DH; Yang J; Kim YS Biochem Biophys Rep; 2019 Mar; 17():182-190. PubMed ID: 30805561 [TBL] [Abstract][Full Text] [Related]
11. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. Cleasby ME; Jarmin S; Eilers W; Elashry M; Andersen DK; Dickson G; Foster K Am J Physiol Endocrinol Metab; 2014 Apr; 306(7):E814-23. PubMed ID: 24473441 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. Steelman CA; Recknor JC; Nettleton D; Reecy JM FASEB J; 2006 Mar; 20(3):580-2. PubMed ID: 16423875 [TBL] [Abstract][Full Text] [Related]
13. Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. Kim JS; Petrella JK; Cross JM; Bamman MM J Appl Physiol (1985); 2007 Nov; 103(5):1488-95. PubMed ID: 17673556 [TBL] [Abstract][Full Text] [Related]
14. Transient inactivation of myostatin induces muscle hypertrophy and overcompensatory growth in zebrafish via inactivation of the SMAD signaling pathway. Fuentes EN; Pino K; Navarro C; Delgado I; Valdés JA; Molina A J Biotechnol; 2013 Dec; 168(4):295-302. PubMed ID: 24184273 [TBL] [Abstract][Full Text] [Related]
15. Myostatin expression is increased by food deprivation in a muscle-specific manner and contributes to muscle atrophy during prolonged food deprivation in mice. Allen DL; Cleary AS; Lindsay SF; Loh AS; Reed JM J Appl Physiol (1985); 2010 Sep; 109(3):692-701. PubMed ID: 20595541 [TBL] [Abstract][Full Text] [Related]
16. Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. Smith HK; Matthews KG; Oldham JM; Jeanplong F; Falconer SJ; Bass JJ; Senna-Salerno M; Bracegirdle JW; McMahon CD PLoS One; 2014; 9(4):e94356. PubMed ID: 24718581 [TBL] [Abstract][Full Text] [Related]
17. Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle. MacLea KS; Abuhagr AM; Pitts NL; Covi JA; Bader BD; Chang ES; Mykles DL J Exp Biol; 2012 Feb; 215(Pt 4):590-604. PubMed ID: 22279066 [TBL] [Abstract][Full Text] [Related]
18. Functional effect of mir-27b on myostatin expression: a relationship in Piedmontese cattle with double-muscled phenotype. Miretti S; Martignani E; Accornero P; Baratta M BMC Genomics; 2013 Mar; 14():194. PubMed ID: 23510267 [TBL] [Abstract][Full Text] [Related]
19. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. Mendias CL; Lynch EB; Gumucio JP; Flood MD; Rittman DS; Van Pelt DW; Roche SM; Davis CS J Physiol; 2015 Apr; 593(8):2037-52. PubMed ID: 25640143 [TBL] [Abstract][Full Text] [Related]
20. Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets. Chelh I; Meunier B; Picard B; Reecy MJ; Chevalier C; Hocquette JF; Cassar-Malek I BMC Genomics; 2009 Apr; 10():196. PubMed ID: 19397818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]