BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 25861026)

  • 1. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport.
    Kim B; Barbier-Chebbah F; Ogawara Y; Jalabert L; Yanagisawa R; Anufriev R; Nomura M
    ACS Nano; 2024 Apr; 18(15):10557-10565. PubMed ID: 38575375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.
    Ren Z; Lee J
    Nanotechnology; 2018 Jan; 29(4):045404. PubMed ID: 29199973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.
    Hsiao TK; Chang HK; Liou SC; Chu MW; Lee SC; Chang CW
    Nat Nanotechnol; 2013 Jul; 8(7):534-8. PubMed ID: 23812186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures.
    Anufriev R; Ramiere A; Maire J; Nomura M
    Nat Commun; 2017 May; 8():15505. PubMed ID: 28516909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.
    Hoogeboom-Pot KM; Hernandez-Charpak JN; Gu X; Frazer TD; Anderson EH; Chao W; Falcone RW; Yang R; Murnane MM; Kapteyn HC; Nardi D
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4846-51. PubMed ID: 25831491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices.
    Chen W; Talreja D; Eichfeld D; Mahale P; Nova NN; Cheng HY; Russell JL; Yu SY; Poilvert N; Mahan G; Mohney SE; Crespi VH; Mallouk TE; Badding JV; Foley B; Gopalan V; Dabo I
    ACS Nano; 2020 Apr; 14(4):4235-4243. PubMed ID: 32223186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    ACS Nano; 2018 Dec; 12(12):11928-11935. PubMed ID: 30418017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ballistic Phonons in Ultrathin Nanowires.
    Vakulov D; Gireesan S; Swinkels MY; Chavez R; Vogelaar T; Torres P; Campo A; De Luca M; Verheijen MA; Koelling S; Gagliano L; Haverkort JEM; Alvarez FX; Bobbert PA; Zardo I; Bakkers EPAM
    Nano Lett; 2020 Apr; 20(4):2703-2709. PubMed ID: 32091910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing ballistic thermal conduction in segmented silicon nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    Nanoscale; 2019 Jul; 11(28):13407-13414. PubMed ID: 31276141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon.
    Lim J; Wang HT; Tang J; Andrews SC; So H; Lee J; Lee DH; Russell TP; Yang P
    ACS Nano; 2016 Jan; 10(1):124-32. PubMed ID: 26650117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.
    Yang L; Zhang Q; Cui Z; Gerboth M; Zhao Y; Xu TT; Walker DG; Li D
    Nano Lett; 2017 Dec; 17(12):7218-7225. PubMed ID: 29087722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic phonon transport in suspended graphene.
    Lee S; Broido D; Esfarjani K; Chen G
    Nat Commun; 2015 Feb; 6():6290. PubMed ID: 25693180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane.
    Johnson JA; Maznev AA; Cuffe J; Eliason JK; Minnich AJ; Kehoe T; Torres CM; Chen G; Nelson KA
    Phys Rev Lett; 2013 Jan; 110(2):025901. PubMed ID: 23383915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon and heat transport control using pillar-based phononic crystals.
    Anufriev R; Nomura M
    Sci Technol Adv Mater; 2018; 19(1):863-870. PubMed ID: 30479674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering thermal conductance using a two-dimensional phononic crystal.
    Zen N; Puurtinen TA; Isotalo TJ; Chaudhuri S; Maasilta IJ
    Nat Commun; 2014 Mar; 5():3435. PubMed ID: 24647049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Ballistic Thermal Transport Across MoS
    Sood A; Xiong F; Chen S; Cheaito R; Lian F; Asheghi M; Cui Y; Donadio D; Goodson KE; Pop E
    Nano Lett; 2019 Apr; 19(4):2434-2442. PubMed ID: 30808167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides.
    Zhang J; Li X; Xiao K; Sumpter BG; Ghosh AW; Liang L
    J Phys Condens Matter; 2020 Jan; 32(2):025306. PubMed ID: 31581144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.