These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25861089)

  • 1. In-Body to On-Body Ultrawideband Propagation Model Derived From Measurements in Living Animals.
    Floor PA; Chávez-Santiago R; Brovoll S; Aardal Ø; Bergsland J; Grymyr OJ; Halvorsen PS; Palomar R; Plettemeier D; Hamran SE; Ramstad TA; Balasingham I
    IEEE J Biomed Health Inform; 2015 May; 19(3):938-48. PubMed ID: 25861089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz.
    Chávez-Santiago R; Garcia-Pardo C; Fornes-Leal A; Vallés-Lluch A; Vermeeren G; Joseph W; Balasingham I; Cardona N
    IEEE J Biomed Health Inform; 2015 May; 19(3):930-7. PubMed ID: 25838532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental UWB frequency analysis for implant communications.
    Garcia-Pardo C; Chávez-Santiago R; Cardona N; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5457-60. PubMed ID: 26737526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matching layer for path loss reduction in ultra wideband implant communications.
    Chavez-Santiago R; Khaleghi A; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6989-92. PubMed ID: 25571604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical characterization and modeling of subject-specific ultrawideband body-centric radio channels and systems for healthcare applications.
    Abbasi QH; Sani A; Alomainy A; Hao Y
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):221-7. PubMed ID: 22147331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Noncoherent UWB Receiver for Implantable Biomedical Devices.
    Nagaraj S; Rassam FG
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2220-5. PubMed ID: 26841381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological channel modeling and implantable UWB antenna design for neural recording systems.
    Bahrami H; Mirbozorgi SA; Rusch LA; Gosselin B
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):88-98. PubMed ID: 25055379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation on power loss of an out-to-in body wireless radio frequency link.
    Chen X; Chen Z; Gao Y; Liu W; Jiang R; Du M; Jiang H
    Technol Health Care; 2021; 29(6):1089-1098. PubMed ID: 30829624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission.
    Sapienza S; Crepaldi M; Motto Ros P; Bonanno A; Demarchi D
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):497-506. PubMed ID: 26011867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography.
    Thiel F; Kreiseler D; Seifert F
    Rev Sci Instrum; 2009 Nov; 80(11):114302. PubMed ID: 19947742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.
    Lim HB; Baumann D; Li EP
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):689-97. PubMed ID: 21062677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.
    Thotahewa KM; Redouté JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5179-82. PubMed ID: 24110902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental implant communication of high data rate video using an ultra wideband radio link.
    Chávez-Santiago R; Balasingham I; Bergsland J; Zahid W; Takizawa K; Miura R; Li HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5175-8. PubMed ID: 24110901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless channel characterization for mm-size neural implants.
    Mark M; Bjorninen T; Chen YD; Venkatraman S; Ukkonen L; Sydanheimo L; Carmena JM; Rabaey JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1565-8. PubMed ID: 21096382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal operating frequency in wireless power transmission for implantable devices.
    Poon AS; O'Driscoll S; Meng TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5674-9. PubMed ID: 18003300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses.
    Stango A; Yazdandoost KY; Negro F; Farina D
    PLoS One; 2016; 11(10):e0164987. PubMed ID: 27764182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison between UWB-IR and MB-OFDM with transmit diversity in implant communications.
    Shimizu Y; Furukawa T; Anzai D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5469-72. PubMed ID: 26737529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An impulse radio ultrawideband system for contactless noninvasive respiratory monitoring.
    Nijsure Y; Tay WP; Gunawan E; Wen F; Yang Z; Guan YL; Chua AP
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1509-17. PubMed ID: 23314764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature implantable antennas for biomedical telemetry: from simulation to realization.
    Kiourti A; Costa JR; Fernandes CA; Santiago AG; Nikita KS
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3140-7. PubMed ID: 22692865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System development and performance evaluation on detection schemes for UWB-IR implant communications.
    Katsu K; Anzai D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1234-7. PubMed ID: 24109917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.