BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 25861968)

  • 1. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing.
    Mohiyuddin M; Mu JC; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 Aug; 31(16):2741-4. PubMed ID: 25861968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of multiple algorithms to reliably detect structural variants in pears.
    Liu Y; Zhang M; Sun J; Chang W; Sun M; Zhang S; Wu J
    BMC Genomics; 2020 Jan; 21(1):61. PubMed ID: 31959124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications.
    Mu JC; Mohiyuddin M; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 May; 31(9):1469-71. PubMed ID: 25524895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. svclassify: a method to establish benchmark structural variant calls.
    Parikh H; Mohiyuddin M; Lam HY; Iyer H; Chen D; Pratt M; Bartha G; Spies N; Losert W; Zook JM; Salit M
    BMC Genomics; 2016 Jan; 17():64. PubMed ID: 26772178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PopIns: population-scale detection of novel sequence insertions.
    Kehr B; Melsted P; Halldórsson BV
    Bioinformatics; 2016 Apr; 32(7):961-7. PubMed ID: 25926346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms.
    Bartenhagen C; Dugas M
    Brief Bioinform; 2016 Jan; 17(1):51-62. PubMed ID: 25998133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural variation detection using next-generation sequencing data: A comparative technical review.
    Guan P; Sung WK
    Methods; 2016 Jun; 102():36-49. PubMed ID: 26845461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data.
    Allam A; Kalnis P; Solovyev V
    Bioinformatics; 2015 Nov; 31(21):3421-8. PubMed ID: 26177965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVmine improves structural variation detection by integrative mining of predictions from multiple algorithms.
    Xia Y; Liu Y; Deng M; Xi R
    Bioinformatics; 2017 Nov; 33(21):3348-3354. PubMed ID: 29036467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
    Trappe K; Emde AK; Ehrlich HC; Reinert K
    Bioinformatics; 2014 Dec; 30(24):3484-90. PubMed ID: 25028727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprites: detection of deletions from sequencing data by re-aligning split reads.
    Zhang Z; Wang J; Luo J; Ding X; Zhong J; Wang J; Wu FX; Pan Y
    Bioinformatics; 2016 Jun; 32(12):1788-96. PubMed ID: 26833342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next generation mapping reveals novel large genomic rearrangements in prostate cancer.
    Jaratlerdsiri W; Chan EKF; Petersen DC; Yang C; Croucher PI; Bornman MSR; Sheth P; Hayes VM
    Oncotarget; 2017 Apr; 8(14):23588-23602. PubMed ID: 28423598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iSVP: an integrated structural variant calling pipeline from high-throughput sequencing data.
    Mimori T; Nariai N; Kojima K; Takahashi M; Ono A; Sato Y; Yamaguchi-Kabata Y; Nagasaki M
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S8. PubMed ID: 24564972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of somatic structural variants from short-read next-generation sequencing data.
    Gong T; Hayes VM; Chan EKF
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32379294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SV-Bay: structural variant detection in cancer genomes using a Bayesian approach with correction for GC-content and read mappability.
    Iakovishina D; Janoueix-Lerosey I; Barillot E; Regnier M; Boeva V
    Bioinformatics; 2016 Apr; 32(7):984-92. PubMed ID: 26740523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of tandem and interspersed segmental duplications using high-throughput sequencing.
    Soylev A; Le TM; Amini H; Alkan C; Hormozdiari F
    Bioinformatics; 2019 Oct; 35(20):3923-3930. PubMed ID: 30937433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SV-STAT accurately detects structural variation via alignment to reference-based assemblies.
    Davis CF; Ritter DI; Wheeler DA; Wang H; Ding Y; Dugan SP; Bainbridge MN; Muzny DM; Rao PH; Man TK; Plon SE; Gibbs RA; Lau CC
    Source Code Biol Med; 2016; 11():8. PubMed ID: 27330550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MUM&Co: accurate detection of all SV types through whole-genome alignment.
    O'Donnell S; Fischer G
    Bioinformatics; 2020 May; 36(10):3242-3243. PubMed ID: 32096823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SV-AUTOPILOT: optimized, automated construction of structural variation discovery and benchmarking pipelines.
    Leung WY; Marschall T; Paudel Y; Falquet L; Mei H; Schönhuth A; Maoz Moss TY
    BMC Genomics; 2015 Mar; 16(1):238. PubMed ID: 25887570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parliament2: Accurate structural variant calling at scale.
    Zarate S; Carroll A; Mahmoud M; Krasheninina O; Jun G; Salerno WJ; Schatz MC; Boerwinkle E; Gibbs RA; Sedlazeck FJ
    Gigascience; 2020 Dec; 9(12):. PubMed ID: 33347570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.