BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25862106)

  • 1. Quantification of Forces During a Neurosurgical Procedure: A Pilot Study.
    Gan LS; Zareinia K; Lama S; Maddahi Y; Yang FW; Sutherland GR
    World Neurosurg; 2015 Aug; 84(2):537-48. PubMed ID: 25862106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonparametric bootstrap technique for calibrating surgical SmartForceps: theory and application.
    Azimaee P; Jafari Jozani M; Maddahi Y; Zareinia K; Sutherland G
    Expert Rev Med Devices; 2017 Oct; 14(10):833-843. PubMed ID: 28892407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying force and positional frequency bands in neurosurgical tasks.
    Maddahi Y; Ghasemloonia A; Zareinia K; Sepehri N; Sutherland GR
    J Robot Surg; 2016 Jun; 10(2):97-102. PubMed ID: 26914651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal properties of contemporary bipolar systems using infrared imaging.
    Keshavarzi S; Bolour A; Yarbrough C; Mendez K; Behrouzi B; Kasasbeh AS; Levy ML
    World Neurosurg; 2015 Mar; 83(3):376-81. PubMed ID: 25463420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experience in using a molecular resonance coagulator in neurooncology].
    Cherekaev VA; Bekiashev AKh; Filippov IuA; Belov AI; Gol'bin DA
    Zh Vopr Neirokhir Im N N Burdenko; 2005; (3):33-6. PubMed ID: 16485825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New applicator improves waterjet dissection quality.
    Tschan CA; Tschan K; Krauss JK; Oertel J
    Br J Neurosurg; 2010 Dec; 24(6):641-7. PubMed ID: 20707679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forces exerted during microneurosurgery: a cadaver study.
    Marcus HJ; Zareinia K; Gan LS; Yang FW; Lama S; Yang GZ; Sutherland GR
    Int J Med Robot; 2014 Jun; 10(2):251-6. PubMed ID: 24431265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First experimental results with a new waterjet dissector: Erbejet 2.
    Tschan CA; Tschan K; Krauss JK; Oertel J
    Acta Neurochir (Wien); 2009 Nov; 151(11):1473-82. PubMed ID: 19404573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tool-Tissue Interaction Forces in Brain Arteriovenous Malformation Surgery.
    Sugiyama T; Gan LS; Zareinia K; Lama S; Sutherland GR
    World Neurosurg; 2017 Jun; 102():221-228. PubMed ID: 28336444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal damage assessment of novel bipolar forceps in a sheep model of spinal surgery.
    Elliott-Lewis EW; Jolette J; Ramos J; Benzel EC
    Neurosurgery; 2010 Jul; 67(1):166-71; discussion 171-2. PubMed ID: 20568670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal comparison of novel bipolar forceps in bovine liver.
    Elliott-Lewis EW; Benzel EC
    Neurosurgery; 2010 Jul; 67(1):160-4; discussion 164-5. PubMed ID: 20568669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water jet dissection in neurosurgery: an update after 208 procedures with special reference to surgical technique and complications.
    Keiner D; Gaab MR; Backhaus V; Piek J; Oertel J
    Neurosurgery; 2010 Dec; 67(2 Suppl Operative):342-54. PubMed ID: 21099557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel bipolar forceps with protein repellence using gold-polytetrafluoroethylene composite film.
    Mikami T; Minamida Y; Koyanagi I; Houkin K
    Neurosurgery; 2007 Feb; 60(2 Suppl 1):ONS157-60; discussion ONS160-1. PubMed ID: 17297378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [New models of forceps for bipolar coagulation].
    Irger IM; Belov SV
    Zh Vopr Neirokhir Im N N Burdenko; 1977; (6):50-3. PubMed ID: 602093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipolar coagulation-capable microforceps. Wire-driven microforceps for a neurosurgery support system.
    Kawai T; Kan K; Hongo K; Nishizawa K; Tajima F; Fujie MG; Dohi T; Takakura K
    IEEE Eng Med Biol Mag; 2005; 24(4):57-62. PubMed ID: 16119214
    [No Abstract]   [Full Text] [Related]  

  • 17. A laboratory training model in fresh cadaveric sheep brain for microneurosurgical dissection of cranial nerves in posterior fossa.
    Hamamcioglu MK; Hicdonmez T; Tiryaki M; Cobanoglu S
    Br J Neurosurg; 2008 Dec; 22(6):769-71. PubMed ID: 19085361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.
    AlZhrani G; Alotaibi F; Azarnoush H; Winkler-Schwartz A; Sabbagh A; Bajunaid K; Lajoie SP; Del Maestro RF
    J Surg Educ; 2015; 72(4):685-96. PubMed ID: 25687956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot study of a device for measuring instrument forces during endoscopic sinus surgery.
    White PS; Nassif R; Saleh H; Drew T
    Acta Otolaryngol; 2004 Mar; 124(2):176-8. PubMed ID: 15072420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.