These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25862113)

  • 1. Training in Brain Retraction Using a Self-Made Three-Dimensional Model.
    Mashiko T; Konno T; Kaneko N; Watanabe E
    World Neurosurg; 2015 Aug; 84(2):585-90. PubMed ID: 25862113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.
    Vakharia VN; Vakharia NN; Hill CS
    World Neurosurg; 2016 Apr; 88():188-198. PubMed ID: 26724615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microneurosurgical training model in fresh cadaveric cow brain: a laboratory study simulating the approach to the circle of Willis.
    Hicdonmez T; Hamamcioglu MK; Tiryaki M; Cukur Z; Cobanoglu S
    Surg Neurol; 2006 Jul; 66(1):100-4; discussion 104. PubMed ID: 16793460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An expandable chamber for safe brain retraction: new technologies in the field of transcranial endoscopic surgery.
    Roca E; Gobetti A; Cornacchia G; Vivaldi O; Buffoli B; Ramorino G
    J Zhejiang Univ Sci B; 2023 Apr; 24(4):326-335. PubMed ID: 37056208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons.
    Waran V; Narayanan V; Karuppiah R; Owen SL; Aziz T
    J Neurosurg; 2014 Feb; 120(2):489-92. PubMed ID: 24321044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of Forces During a Neurosurgical Procedure: A Pilot Study.
    Gan LS; Zareinia K; Lama S; Maddahi Y; Yang FW; Sutherland GR
    World Neurosurg; 2015 Aug; 84(2):537-48. PubMed ID: 25862106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training for Skull Base Surgery with a Colored Temporal Bone Model Created by Three-Dimensional Printing Technology.
    Wanibuchi M; Noshiro S; Sugino T; Akiyama Y; Mikami T; Iihoshi S; Miyata K; Komatsu K; Mikuni N
    World Neurosurg; 2016 Jul; 91():66-72. PubMed ID: 27062915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of a craniocerebral model with tactile-realistic feature and intracranial pressure for neurosurgical training.
    Yi Z; He B; Liu Y; Huang S; Hong W
    J Neurointerv Surg; 2020 Jan; 12(1):94-97. PubMed ID: 31320548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.
    Mashiko T; Otani K; Kawano R; Konno T; Kaneko N; Ito Y; Watanabe E
    World Neurosurg; 2015 Mar; 83(3):351-61. PubMed ID: 24141000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical pediatric model for craniosynostosis surgical training.
    Coelho G; Warf B; Lyra M; Zanon N
    Childs Nerv Syst; 2014 Dec; 30(12):2009-14. PubMed ID: 25183390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the frontotemporal orbitozygomatic approach using a three-dimensional visualization and modeling application.
    D'Ambrosio AL; Mocco J; Hankinson TC; Bruce JN; van Loveren HR
    Neurosurgery; 2008 Mar; 62(3 Suppl 1):251-60; discussion 260-1. PubMed ID: 18424994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laboratory training model in fresh cadaveric sheep brain for microneurosurgical dissection of cranial nerves in posterior fossa.
    Hamamcioglu MK; Hicdonmez T; Tiryaki M; Cobanoglu S
    Br J Neurosurg; 2008 Dec; 22(6):769-71. PubMed ID: 19085361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls.
    Thiex R; Hans FJ; Krings T; Sellhaus B; Gilsbach JM
    Neuroradiology; 2005 Oct; 47(10):765-73. PubMed ID: 16136263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain spatula with transparent tip: technical note.
    Okudera H; Kobayashi S; Kyoshima K; Goel H
    Acta Neurochir (Wien); 1997; 139(10):977-8. PubMed ID: 9401659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel embalming solution for neurosurgical simulation in cadavers.
    Benet A; Rincon-Torroella J; Lawton MT; González Sánchez JJ
    J Neurosurg; 2014 May; 120(5):1229-37. PubMed ID: 24527814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Hollow Elastic Models for Intracranial Aneurysm Clipping Election - A Case Study.
    Leal AG; Mori YT; Nohama P; de Souza MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4137-4140. PubMed ID: 31946781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer.
    Olszewski R; Szymor P; Kozakiewicz M
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1847-52. PubMed ID: 25176496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical modelling and computer aided simulation of deep brain retraction in neurosurgery.
    Awasthi A; Gautam U; Bhaskar S; Roy S
    Comput Methods Programs Biomed; 2020 Dec; 197():105688. PubMed ID: 32861182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
    Gür Y
    Mol Cell Biomech; 2014 Dec; 11(4):249-58. PubMed ID: 26336695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.