These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 25862223)

  • 1. Functional Characterization of Corynebacterium alkanolyticum β-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum.
    Watanabe A; Hiraga K; Suda M; Yukawa H; Inui M
    Appl Environ Microbiol; 2015 Jun; 81(12):4173-83. PubMed ID: 25862223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum.
    Kuge T; Watanabe A; Hasegawa S; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5019-5032. PubMed ID: 28409383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning of a bifunctional beta-xylosidase/alpha-L-arabinosidase from alfalfa roots: heterologous expression in Medicago truncatula and substrate specificity of the purified enzyme.
    Xiong JS; Balland-Vanney M; Xie ZP; Schultze M; Kondorosi A; Kondorosi E; Staehelin C
    J Exp Bot; 2007; 58(11):2799-810. PubMed ID: 17615411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D -xylosidase from rumen metagenome.
    Zhou J; Bao L; Chang L; Zhou Y; Lu H
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):143-52. PubMed ID: 21720773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface.
    Imao K; Konishi R; Kishida M; Hirata Y; Segawa S; Adachi N; Matsuura R; Tsuge Y; Matsumoto T; Tanaka T; Kondo A
    Bioresour Technol; 2017 Dec; 245(Pt B):1684-1691. PubMed ID: 28599919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides.
    Valenzuela SV; Lopez S; Biely P; Sanz-Aparicio J; Pastor FI
    Appl Environ Microbiol; 2016 Sep; 82(17):5116-24. PubMed ID: 27316951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass.
    Yim SS; Choi JW; Lee SH; Jeong KJ
    ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae.
    Margolles-Clark E; Tenkanen M; Nakari-Setälä T; Penttilä M
    Appl Environ Microbiol; 1996 Oct; 62(10):3840-6. PubMed ID: 8837440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
    Henrich A; Kuhlmann N; Eck AW; Krämer R; Seibold GM
    J Bacteriol; 2013 Jun; 195(11):2573-84. PubMed ID: 23543710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan.
    Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Ratanakhanokchai K
    Appl Environ Microbiol; 2021 Nov; 87(24):e0173021. PubMed ID: 34613758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans.
    Zhou J; Bao L; Chang L; Liu Z; You C; Lu H
    Lett Appl Microbiol; 2012 Feb; 54(2):79-87. PubMed ID: 22085266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of the first β-1,3-d-xylosidase from a gram-positive bacterium, Streptomyces sp. SWU10.
    Phuengmaung P; Fujiwara D; Sukhumsirichart W; Sakamoto T
    Enzyme Microb Technol; 2018 May; 112():72-78. PubMed ID: 29499784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum.
    Li Q; Wu T; Qi Z; Zhao L; Pei J; Tang F
    BMC Biotechnol; 2018 May; 18(1):29. PubMed ID: 29783967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a broad-specificity xylosidase/arabinosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192.
    Whitehead TR; Cotta MA
    Curr Microbiol; 2001 Oct; 43(4):293-8. PubMed ID: 11683366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression and characterization of a β-D-xylosidase from Lactobacillus rossiae DSM 15814(T).
    Pontonio E; Mahony J; Di Cagno R; O'Connell Motherway M; Lugli GA; O'Callaghan A; De Angelis M; Ventura M; Gobbetti M; van Sinderen D
    Microb Cell Fact; 2016 May; 15():72. PubMed ID: 27142164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the arabinoxylan-degrading machinery of the thermophilic bacterium Herbinix hemicellulosilytica-Six new xylanases, three arabinofuranosidases and one xylosidase.
    Mechelke M; Koeck DE; Broeker J; Roessler B; Krabichler F; Schwarz WH; Zverlov VV; Liebl W
    J Biotechnol; 2017 Sep; 257():122-130. PubMed ID: 28450260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions and characteristics of two bifunctional GH43 β-xylosidase /α-L-arabinofuranosidases with different structures on the xylan degradation of Paenibacillus physcomitrellae strain XB.
    Zhang XJ; Wang L; Wang S; Chen ZL; Li YH
    Microbiol Res; 2021 Dec; 253():126886. PubMed ID: 34687975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
    Yim SS; Choi JW; Lee SH; Jeon EJ; Chung WJ; Jeong KJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28799725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylooligosaccharide utilization by the ruminal anaerobic bacterium Selenomonas ruminantium.
    Cotta MA; Whitehead TR
    Curr Microbiol; 1998 Apr; 36(4):183-9. PubMed ID: 9504982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.