These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25862263)

  • 1. Dorsal striatum mediates cognitive control, not cognitive effort per se, in decision-making: An event-related fMRI study.
    Robertson BD; Hiebert NM; Seergobin KN; Owen AM; MacDonald PA
    Neuroimage; 2015 Jul; 114():170-84. PubMed ID: 25862263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making.
    Mulert C; Seifert C; Leicht G; Kirsch V; Ertl M; Karch S; Moosmann M; Lutz J; Möller HJ; Hegerl U; Pogarell O; Jäger L
    Neuroimage; 2008 Aug; 42(1):158-68. PubMed ID: 18547820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining dorsal striatum in cognitive effort using Parkinson's disease and fMRI.
    MacDonald AA; Seergobin KN; Tamjeedi R; Owen AM; Provost JS; Monchi O; Ganjavi H; MacDonald PA
    Ann Clin Transl Neurol; 2014 Jun; 1(6):390-400. PubMed ID: 25356409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization and dynamics of corticostriatal pathways link the medial orbitofrontal cortex to future behavioral responses.
    Verstynen TD
    J Neurophysiol; 2014 Nov; 112(10):2457-69. PubMed ID: 25143543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring adolescent cognitive control in a combined interference switching task.
    Mennigen E; Rodehacke S; Müller KU; Ripke S; Goschke T; Smolka MN
    Neuropsychologia; 2014 Aug; 61():175-89. PubMed ID: 24971708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsal striatum mediates deliberate decision making, not late-stage, stimulus-response learning.
    Hiebert NM; Owen AM; Seergobin KN; MacDonald PA
    Hum Brain Mapp; 2017 Dec; 38(12):6133-6156. PubMed ID: 28945307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study.
    Kaufmann L; Koppelstaetter F; Delazer M; Siedentopf C; Rhomberg P; Golaszewski S; Felber S; Ischebeck A
    Neuroimage; 2005 Apr; 25(3):888-98. PubMed ID: 15808989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control.
    Köhler S; Bär KJ; Wagner G
    Hum Brain Mapp; 2016 Jun; 37(6):2305-18. PubMed ID: 26970351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal course of cognitive control in a picture-word interference task.
    Xiao X; Zhang Q; Jia L; Zhang Y; Luo J
    Neuroreport; 2010 Jan; 21(2):104-7. PubMed ID: 19952966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal activity in Huntington's disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study.
    Gray MA; Egan GF; Ando A; Churchyard A; Chua P; Stout JC; Georgiou-Karistianis N
    Exp Neurol; 2013 Jan; 239():218-28. PubMed ID: 23123406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
    Chen Z; Lei X; Ding C; Li H; Chen A
    Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroimaging of marijuana smokers during inhibitory processing: a pilot investigation.
    Gruber SA; Yurgelun-Todd DA
    Brain Res Cogn Brain Res; 2005 Apr; 23(1):107-18. PubMed ID: 15795138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the cognitive miser: Cue-utilization in effort-based decision making.
    Dunn TL; Risko EF
    Acta Psychol (Amst); 2019 Jul; 198():102863. PubMed ID: 31252157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striatum in stimulus-response learning via feedback and in decision making.
    Hiebert NM; Vo A; Hampshire A; Owen AM; Seergobin KN; MacDonald PA
    Neuroimage; 2014 Nov; 101():448-57. PubMed ID: 25038436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsomedial striatum involvement in regulating conflict between current and presumed outcomes.
    Mestres-Missé A; Bazin PL; Trampel R; Turner R; Kotz SA
    Neuroimage; 2014 Sep; 98():159-67. PubMed ID: 24825503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study.
    Dong G; Hu Y; Lin X; Lu Q
    Biol Psychol; 2013 Oct; 94(2):282-9. PubMed ID: 23933447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of fMRI to detect neural responses to cognitive interference and planning: evidence for a contribution of task related changes in heart rate?
    van 't Ent D; den Braber A; Rotgans E; de Geus EJ; de Munck JC
    J Neurosci Methods; 2014 May; 229():97-107. PubMed ID: 24768574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction time-related activity reflecting periodic, task-specific cognitive control.
    Barber AD; Pekar JJ; Mostofsky SH
    Behav Brain Res; 2016 Jan; 296():100-108. PubMed ID: 26318935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.