These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25862263)

  • 21. Cognitive capacity limitations and Need for Cognition differentially predict reward-induced cognitive effort expenditure.
    Sandra DA; Otto AR
    Cognition; 2018 Mar; 172():101-106. PubMed ID: 29247878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The functional anatomy of inspection time: an event-related fMRI study.
    Deary IJ; Simonotto E; Meyer M; Marshall A; Marshall I; Goddard N; Wardlaw JM
    Neuroimage; 2004 Aug; 22(4):1466-79. PubMed ID: 15275904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adult brains don't fully overcome biases that lead to incorrect performance during cognitive development: an fMRI study in young adults completing a Piaget-like task.
    Leroux G; Spiess J; Zago L; Rossi S; Lubin A; Turbelin MR; Mazoyer B; Tzourio-Mazoyer N; Houdé O; Joliot M
    Dev Sci; 2009 Mar; 12(2):326-38. PubMed ID: 19143805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of cognitive style and flexible cognitive control.
    Shin G; Kim C
    Neuroimage; 2015 Jun; 113():78-85. PubMed ID: 25812714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological Correlates of a Versatile Executive Control System in the Monkey Anterior Cingulate Cortex.
    Michelet T; Bioulac B; Langbour N; Goillandeau M; Guehl D; Burbaud P
    Cereb Cortex; 2016 Apr; 26(4):1684-1697. PubMed ID: 25631057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reward circuitry activation reflects social preferences in the face of cognitive effort.
    Sullivan-Toole H; Dobryakova E; DePasque S; Tricomi E
    Neuropsychologia; 2019 Feb; 123():55-66. PubMed ID: 29906456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How negative affect influences neural control processes underlying the resolution of cognitive interference: an event-related fMRI study.
    Melcher T; Born C; Gruber O
    Neurosci Res; 2011 Aug; 70(4):415-27. PubMed ID: 21620907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute tryptophan depletion improves performance and modulates the BOLD response during a Stroop task in healthy females.
    Evers EA; van der Veen FM; Jolles J; Deutz NE; Schmitt JA
    Neuroimage; 2006 Aug; 32(1):248-55. PubMed ID: 16650775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adolescent risky decision-making: neurocognitive development of reward and control regions.
    Van Leijenhorst L; Gunther Moor B; Op de Macks ZA; Rombouts SA; Westenberg PM; Crone EA
    Neuroimage; 2010 May; 51(1):345-55. PubMed ID: 20188198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson's disease patients: evidence from a model-based fMRI study.
    Schonberg T; O'Doherty JP; Joel D; Inzelberg R; Segev Y; Daw ND
    Neuroimage; 2010 Jan; 49(1):772-81. PubMed ID: 19682583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.
    Rahm C; Liberg B; Wiberg-Kristoffersen M; Aspelin P; Msghina M
    Scand J Psychol; 2013 Apr; 54(2):66-71. PubMed ID: 23316801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined distributed source and single-trial EEG-fMRI modeling: application to effortful decision making processes.
    Esposito F; Mulert C; Goebel R
    Neuroimage; 2009 Aug; 47(1):112-21. PubMed ID: 19361566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociable effects of motivation and expectancy on conflict processing: an fMRI study.
    Soutschek A; Stelzel C; Paschke L; Walter H; Schubert T
    J Cogn Neurosci; 2015 Feb; 27(2):409-23. PubMed ID: 25203271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition.
    Rogers RD; Ramnani N; Mackay C; Wilson JL; Jezzard P; Carter CS; Smith SM
    Biol Psychiatry; 2004 Mar; 55(6):594-602. PubMed ID: 15013828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioral and ERP indices of response conflict in Stroop and flanker tasks.
    Tillman CM; Wiens S
    Psychophysiology; 2011 Oct; 48(10):1405-11. PubMed ID: 21457276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task.
    Wagner G; Sinsel E; Sobanski T; Köhler S; Marinou V; Mentzel HJ; Sauer H; Schlösser RG
    Biol Psychiatry; 2006 May; 59(10):958-65. PubMed ID: 16458263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stop interfering: Stroop task conflict independence from informational conflict and interference.
    Kalanthroff E; Goldfarb L; Usher M; Henik A
    Q J Exp Psychol (Hove); 2013; 66(7):1356-67. PubMed ID: 23163896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.