These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 25862466)
1. The Antibacterial Effects of an Antimicrobial Peptide Human β-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Lin P; Li Y; Dong K; Li Q Curr Microbiol; 2015 Aug; 71(2):170-6. PubMed ID: 25862466 [TBL] [Abstract][Full Text] [Related]
2. Effects of human β-defensin 3 fused with carbohydrate-binding domain on the function of type III secretion system in Pseudomonas aeruginosa PA14. Wu Y; Liu Y; Dong K; Li Q Braz J Microbiol; 2020 Mar; 51(1):29-35. PubMed ID: 31933178 [TBL] [Abstract][Full Text] [Related]
5. Design SMAP29-LysPA26 as a Highly Efficient Artilysin against Pseudomonas aeruginosa with Bactericidal and Antibiofilm Activity. Wang T; Zheng Y; Dai J; Zhou J; Yu R; Zhang C Microbiol Spectr; 2021 Dec; 9(3):e0054621. PubMed ID: 34878337 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial activity of chensinin-1b, a peptide with a random coil conformation, against multiple-drug-resistant Pseudomonas aeruginosa. Shang D; Meng X; Zhang D; Kou Z Biochem Pharmacol; 2017 Nov; 143():65-78. PubMed ID: 28756209 [TBL] [Abstract][Full Text] [Related]
7. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Dosler S; Karaaslan E Peptides; 2014 Dec; 62():32-7. PubMed ID: 25285879 [TBL] [Abstract][Full Text] [Related]
8. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants. Ahn KB; Kim AR; Kum KY; Yun CH; Han SH J Microbiol; 2017 Oct; 55(10):830-836. PubMed ID: 28956355 [TBL] [Abstract][Full Text] [Related]
9. In vitro antimicrobial efficacy of β-defensin 3 against Staphylococcus pseudintermedius isolates from healthy and atopic canine skin. Fazakerley J; Crossley J; McEwan N; Carter S; Nuttall T Vet Dermatol; 2010 Oct; 21(5):463-8. PubMed ID: 20492622 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Parkins MD; Ceri H; Storey DG Mol Microbiol; 2001 Jun; 40(5):1215-26. PubMed ID: 11401724 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the anti-biofilm and antibacterial effects of Juglans regia L. extracts against clinical isolates of Pseudomonas aeruginosa. Dolatabadi S; Moghadam HN; Mahdavi-Ourtakand M Microb Pathog; 2018 May; 118():285-289. PubMed ID: 29605650 [TBL] [Abstract][Full Text] [Related]
12. Peptide 1018 inhibits swarming and influences Anr-regulated gene expression downstream of the stringent stress response in Pseudomonas aeruginosa. Wilkinson LV; Alford MA; Coleman SR; Wu BC; Lee AHY; Blimkie TM; Bains M; Falsafi R; Pletzer D; Hancock REW PLoS One; 2021; 16(4):e0250977. PubMed ID: 33930077 [TBL] [Abstract][Full Text] [Related]
13. Ginseng aqueous extract attenuates the production of virulence factors, stimulates twitching and adhesion, and eradicates biofilms of Pseudomonas aeruginosa. Alipour M; Omri A; Suntres ZE Can J Physiol Pharmacol; 2011 Jun; 89(6):419-27. PubMed ID: 21815782 [TBL] [Abstract][Full Text] [Related]
14. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. Hu YF; Liu CP; Wang NY; Shih SC BMC Infect Dis; 2016 Aug; 16(1):444. PubMed ID: 27553962 [TBL] [Abstract][Full Text] [Related]
15. The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Parducho KR; Beadell B; Ybarra TK; Bush M; Escalera E; Trejos AT; Chieng A; Mendez M; Anderson C; Park H; Wang Y; Lu W; Porter E Front Immunol; 2020; 11():805. PubMed ID: 32457749 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability-enhanced Resveramax™ modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Vasavi HS; Sudeep HV; Lingaraju HB; Shyam Prasad K Microb Pathog; 2017 Mar; 104():64-71. PubMed ID: 28065820 [TBL] [Abstract][Full Text] [Related]
17. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa in the planktonic and biofilm states. Velez Perez AL; Schmidt-Malan SM; Kohner PC; Karau MJ; Greenwood-Quaintance KE; Patel R Diagn Microbiol Infect Dis; 2016 Jul; 85(3):356-359. PubMed ID: 27130477 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Pseudomonas aeruginosa by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers. Howard JJ; Sturge CR; Moustafa DA; Daly SM; Marshall-Batty KR; Felder CF; Zamora D; Yabe-Gill M; Labandeira-Rey M; Bailey SM; Wong M; Goldberg JB; Geller BL; Greenberg DE Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28137807 [No Abstract] [Full Text] [Related]
19. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Chakraborty P; Joardar S; Ray S; Biswas P; Maiti D; Tribedi P Folia Microbiol (Praha); 2018 Nov; 63(6):763-772. PubMed ID: 29855854 [TBL] [Abstract][Full Text] [Related]
20. Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human β-defensins 2 and 3. Spudy B; Sönnichsen FD; Waetzig GH; Grötzinger J; Jung S Biochem Biophys Res Commun; 2012 Oct; 427(1):207-11. PubMed ID: 22995312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]