These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25862745)

  • 1. A growth-rate composition formula for the growth of E.coli on co-utilized carbon substrates.
    Hermsen R; Okano H; You C; Werner N; Hwa T
    Mol Syst Biol; 2015 Apr; 11(4):801. PubMed ID: 25862745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there any role for cAMP-CRP in carbon catabolite repression of the Escherichia coli lac operon?
    Crasnier-Mednansky M
    Nat Rev Microbiol; 2008 Dec; 6(12):954; author reply 954. PubMed ID: 18955986
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation underlying hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia coli.
    Okano H; Hermsen R; Kochanowski K; Hwa T
    Nat Microbiol; 2020 Jan; 5(1):206-215. PubMed ID: 31819215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive Effect of Carbon Sources on Natural Transformation in Escherichia coli: Role of Low-Level Cyclic AMP (cAMP)-cAMP Receptor Protein in the Derepression of rpoS.
    Guo M; Wang H; Xie N; Xie Z
    J Bacteriol; 2015 Oct; 197(20):3317-28. PubMed ID: 26260461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12.
    Bettenbrock K; Sauter T; Jahreis K; Kremling A; Lengeler JW; Gilles ED
    J Bacteriol; 2007 Oct; 189(19):6891-900. PubMed ID: 17675376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose.
    Ammar EM; Wang X; Rao CV
    Sci Rep; 2018 Jan; 8(1):609. PubMed ID: 29330542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Global Regulators RpoS and Cyclic-AMP/CRP on the Catabolome and Transcriptome of Escherichia coli K12 during Carbon- and Energy-Limited Growth.
    Franchini AG; Ihssen J; Egli T
    PLoS One; 2015; 10(7):e0133793. PubMed ID: 26204448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding carbon catabolite repression in Escherichia coli using quantitative models.
    Kremling A; Geiselmann J; Ropers D; de Jong H
    Trends Microbiol; 2015 Feb; 23(2):99-109. PubMed ID: 25475882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli.
    Castaño-Cerezo S; Bernal V; Blanco-Catalá J; Iborra JL; Cánovas M
    Mol Microbiol; 2011 Dec; 82(5):1110-28. PubMed ID: 22059728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli.
    Wang L; Hashimoto Y; Tsao CY; Valdes JJ; Bentley WE
    J Bacteriol; 2005 Mar; 187(6):2066-76. PubMed ID: 15743955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relief of catabolite repression in a cAMP-independent catabolite gene activator mutant of Escherichia coli.
    Karimova G; Ladant D; Ullmann A
    Res Microbiol; 2004 Mar; 155(2):76-9. PubMed ID: 14990258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular physiology of the dynamic regulation of carbon catabolite repression in Escherichia coli.
    Borirak O; Bekker M; Hellingwerf KJ
    Microbiology (Reading); 2014 Jun; 160(Pt 6):1214-1223. PubMed ID: 24603062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex.
    Nam TW; Park YH; Jeong HJ; Ryu S; Seok YJ
    Nucleic Acids Res; 2005; 33(21):6712-22. PubMed ID: 16314304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli.
    Mao XJ; Huo YX; Buck M; Kolb A; Wang YP
    Nucleic Acids Res; 2007; 35(5):1432-40. PubMed ID: 17284458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli.
    Park JM; Vinuselvi P; Lee SK
    Gene; 2012 Aug; 504(1):116-21. PubMed ID: 22579471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli.
    Srikhanta YN; Atack JM; Beacham IR; Jennings MP
    Biochem Biophys Res Commun; 2013 Jul; 436(3):362-5. PubMed ID: 23726917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon source-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membranes.
    Seoh HK; Tai PC
    J Bacteriol; 1997 Feb; 179(4):1077-81. PubMed ID: 9023186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP.
    Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R
    J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP receptor protein from escherichia coli as a model of signal transduction in proteins--a review.
    Fic E; Bonarek P; Gorecki A; Kedracka-Krok S; Mikolajczak J; Polit A; Tworzydlo M; Dziedzicka-Wasylewska M; Wasylewski Z
    J Mol Microbiol Biotechnol; 2009; 17(1):1-11. PubMed ID: 19033675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.