BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25862765)

  • 1. Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text.
    Luo Y; Xin Y; Hochberg E; Joshi R; Uzuner O; Szolovits P
    J Am Med Inform Assoc; 2015 Sep; 22(5):1009-19. PubMed ID: 25862765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injury narrative text classification using factorization model.
    Chen L; Vallmuur K; Nayak R
    BMC Med Inform Decis Mak; 2015; 15 Suppl 1(Suppl 1):S5. PubMed ID: 26043671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic lymphoma classification with sentence subgraph mining from pathology reports.
    Luo Y; Sohani AR; Hochberg EP; Szolovits P
    J Am Med Inform Assoc; 2014; 21(5):824-32. PubMed ID: 24431333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Documents Clustering Based on Medication/Symptom Names Using Multi-View Nonnegative Matrix Factorization.
    Ling Y; Pan X; Li G; Hu X
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):500-4. PubMed ID: 26011887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised feature selection via latent representation learning and manifold regularization.
    Tang C; Bian M; Liu X; Li M; Zhou H; Wang P; Yin H
    Neural Netw; 2019 Sep; 117():163-178. PubMed ID: 31170576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Unsupervised Graph Based Continuous Word Representation Method for Biomedical Text Mining.
    Jiang Z; Li L; Huang D
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):634-42. PubMed ID: 26390497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization.
    Cai Y; Gu H; Kenney T
    Microbiome; 2017 Aug; 5(1):110. PubMed ID: 28859695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Information extraction from multi-institutional radiology reports.
    Hassanpour S; Langlotz CP
    Artif Intell Med; 2016 Jan; 66():29-39. PubMed ID: 26481140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of temporal relations from clinical free text: A systematic review of current approaches.
    Alfattni G; Peek N; Nenadic G
    J Biomed Inform; 2020 Aug; 108():103488. PubMed ID: 32673788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature engineering combined with machine learning and rule-based methods for structured information extraction from narrative clinical discharge summaries.
    Xu Y; Hong K; Tsujii J; Chang EI
    J Am Med Inform Assoc; 2012; 19(5):824-32. PubMed ID: 22586067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Layman Readability of Clinical Narratives with Unsupervised Synonym Replacement.
    Moen H; Peltonen LM; Koivumäki M; Suhonen H; Salakoski T; Ginter F; Salanterä S
    Stud Health Technol Inform; 2018; 247():725-729. PubMed ID: 29678056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network.
    Wu Y; Jiang M; Lei J; Xu H
    Stud Health Technol Inform; 2015; 216():624-8. PubMed ID: 26262126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.
    Yu S; Liao KP; Shaw SY; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2015 Sep; 22(5):993-1000. PubMed ID: 25929596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes.
    Khalifa A; Meystre S
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S128-S132. PubMed ID: 26318122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-driven automatic subgraph creation for literature-based discovery.
    Cameron D; Kavuluru R; Rindflesch TC; Sheth AP; Thirunarayan K; Bodenreider O
    J Biomed Inform; 2015 Apr; 54():141-57. PubMed ID: 25661592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting Information from Electronic Medical Records to Identify the Obesity Status of a Patient Based on Comorbidities and Bodyweight Measures.
    Figueroa RL; Flores CA
    J Med Syst; 2016 Aug; 40(8):191. PubMed ID: 27402260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying and evaluating clinical subtypes of Alzheimer's disease in care electronic health records using unsupervised machine learning.
    Alexander N; Alexander DC; Barkhof F; Denaxas S
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):343. PubMed ID: 34879829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensor learning of pointwise mutual information from EHR data for early prediction of sepsis.
    Nesaragi N; Patidar S; Aggarwal V
    Comput Biol Med; 2021 Jul; 134():104430. PubMed ID: 33991856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.