These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25862933)

  • 1. May the force be with you: unfolding lipid-protein interactions by single-molecule force spectroscopy.
    Dowhan W; Vitrac H; Bogdanov M
    Structure; 2015 Apr; 23(4):612-4. PubMed ID: 25862933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing a lipid-dependent alteration in single lactose permeases.
    Serdiuk T; Sugihara J; Mari SA; Kaback HR; Müller DJ
    Structure; 2015 Apr; 23(4):754-61. PubMed ID: 25800555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli.
    Bogdanov M; Heacock P; Guan Z; Dowhan W
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15057-62. PubMed ID: 20696931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-dependent generation of dual topology for a membrane protein.
    Bogdanov M; Dowhan W
    J Biol Chem; 2012 Nov; 287(45):37939-48. PubMed ID: 22969082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structure and function of lactose permease from Escherichia coli].
    Iwata S
    Tanpakushitsu Kakusan Koso; 2004 Jun; 49(8):1212-8. PubMed ID: 15209217
    [No Abstract]   [Full Text] [Related]  

  • 6. Coarse-grained simulations of proton-dependent conformational changes in lactose permease.
    Jewel Y; Dutta P; Liu J
    Proteins; 2016 Aug; 84(8):1067-74. PubMed ID: 27090495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct protein-lipid interactions shape the conformational landscape of secondary transporters.
    Martens C; Shekhar M; Borysik AJ; Lau AM; Reading E; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2018 Oct; 9(1):4151. PubMed ID: 30297844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pull-and-Paste of Single Transmembrane Proteins.
    Serdiuk T; Mari SA; Müller DJ
    Nano Lett; 2017 Jul; 17(7):4478-4488. PubMed ID: 28627175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology.
    Bogdanov M; Xie J; Heacock P; Dowhan W
    J Cell Biol; 2008 Sep; 182(5):925-35. PubMed ID: 18779371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar transport across lactose permease probed by steered molecular dynamics.
    Jensen MØ; Yin Y; Tajkhorshid E; Schulten K
    Biophys J; 2007 Jul; 93(1):92-102. PubMed ID: 17434947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring pyrene excimers in lactose permease liposomes: revealing the presence of phosphatidylglycerol in proximity to an integral membrane protein.
    Picas L; Merino-Montero S; Morros A; Hernández-Borrell J; Montero MT
    J Fluoresc; 2007 Nov; 17(6):649-54. PubMed ID: 16794873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease.
    Vadyvaloo V; Smirnova IN; Kasho VN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1051-9. PubMed ID: 16574149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy study of Escherichia coli lactose permease proteolipid sheets.
    Merino S; Domènech O; Montero MT; Hernández-Borrell J
    Biosens Bioelectron; 2005 Mar; 20(9):1843-6. PubMed ID: 15681202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli.
    Picas L; Montero MT; Morros A; Vázquez-Ibar JL; Hernández-Borrell J
    Biochim Biophys Acta; 2010 Feb; 1798(2):291-6. PubMed ID: 19595667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling FRET to investigate the selectivity of lactose permease of Escherichia coli for lipids.
    Suárez-Germà C; Hernández-Borrell J; Prieto M; Loura LM
    Mol Membr Biol; 2014 Jun; 31(4):120-30. PubMed ID: 24826799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition.
    Bogdanov M; Heacock PN; Dowhan W
    EMBO J; 2002 May; 21(9):2107-16. PubMed ID: 11980707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactose permease H+-lactose symporter: mechanical switch or Brownian ratchet?
    Naftalin RJ; Green N; Cunningham P
    Biophys J; 2007 May; 92(10):3474-91. PubMed ID: 17325012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.