These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 25862949)

  • 1. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination.
    Zhang J; Chen DD; Li L; Li WW; Mu Y; Yu HQ
    Water Res; 2016 Oct; 102():533-541. PubMed ID: 27423047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates.
    Kristiana I; Gallard H; Joll C; Croué JP
    Water Res; 2009 Sep; 43(17):4177-86. PubMed ID: 19616274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia.
    Tian C; Liu R; Liu H; Qu J
    Water Res; 2013 Oct; 47(15):5901-10. PubMed ID: 23911224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size.
    Hua G; Reckhow DA
    Environ Sci Technol; 2007 May; 41(9):3309-15. PubMed ID: 17539542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pre-ozonation on the formation and speciation of DBPs.
    Hua G; Reckhow DA
    Water Res; 2013 Sep; 47(13):4322-30. PubMed ID: 23764583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of bromine substitution factors of DBPs during chlorination and chloramination.
    Hua G; Reckhow DA
    Water Res; 2012 Sep; 46(13):4208-16. PubMed ID: 22687526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide.
    Liu Y; Liu K; Plewa MJ; Karanfil T; Liu C
    J Environ Sci (China); 2022 Jul; 117():151-160. PubMed ID: 35725067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.
    Li C; Wang D; Xu X; Wang Z
    Sci Total Environ; 2017 Jun; 587-588():177-184. PubMed ID: 28238434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products.
    Yan M; Roccaro P; Fabbricino M; Korshin GV
    Chemosphere; 2018 Jan; 191():477-484. PubMed ID: 29059555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trihalomethane yields from twelve aromatic halogenated disinfection byproducts during chlor(am)ination.
    Hu S; Gong T; Wang J; Xian Q
    Chemosphere; 2019 Aug; 228():668-675. PubMed ID: 31071557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.
    Zhai H; He X; Zhang Y; Du T; Adeleye AS; Li Y
    Chemosphere; 2017 Aug; 181():224-231. PubMed ID: 28445816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.
    Yang X; Guo W; Lee W
    Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time.
    Sakai H; Tokuhara S; Murakami M; Kosaka K; Oguma K; Takizawa S
    Water Res; 2016 Jan; 88():661-670. PubMed ID: 26575475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of organic chloramines during water disinfection: chlorination versus chloramination.
    Lee W; Westerhoff P
    Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2019 Oct; 162():115-126. PubMed ID: 31255781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.