These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25863053)
1. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers. Patowary S; Pisterzi LF; Biener G; Holz JD; Oliver JA; Wells JW; Raicu V Biophys J; 2015 Apr; 108(7):1613-1622. PubMed ID: 25863053 [TBL] [Abstract][Full Text] [Related]
2. Anomalous surplus energy transfer observed with multiple FRET acceptors. Koushik SV; Blank PS; Vogel SS PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
4. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Rizzo MA; Springer G; Segawa K; Zipfel WR; Piston DW Microsc Microanal; 2006 Jun; 12(3):238-54. PubMed ID: 17481360 [TBL] [Abstract][Full Text] [Related]
5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
6. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. Pisterzi LF; Jansma DB; Georgiou J; Woodside MJ; Chou JT; Angers S; Raicu V; Wells JW J Biol Chem; 2010 May; 285(22):16723-38. PubMed ID: 20304928 [TBL] [Abstract][Full Text] [Related]
7. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446 [TBL] [Abstract][Full Text] [Related]
8. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200 [TBL] [Abstract][Full Text] [Related]
9. The impact of heterogeneity and dark acceptor states on FRET: implications for using fluorescent protein donors and acceptors. Vogel SS; Nguyen TA; van der Meer BW; Blank PS PLoS One; 2012; 7(11):e49593. PubMed ID: 23152925 [TBL] [Abstract][Full Text] [Related]
10. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor. Quitterer U; Pohl A; Langer A; Koller S; Abdalla S Biochem Biophys Res Commun; 2011 Jun; 409(3):544-9. PubMed ID: 21600887 [TBL] [Abstract][Full Text] [Related]
11. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer. Basak S; Sakia N; Dougherty L; Guo Z; Wu F; Mindlin F; Lary JW; Cole JL; Ding F; Bowen ME J Mol Biol; 2021 Mar; 433(5):166793. PubMed ID: 33388290 [TBL] [Abstract][Full Text] [Related]
12. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy. Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116 [TBL] [Abstract][Full Text] [Related]
13. On the use of nonfluorescent dye labeled ligands in FRET-based receptor binding studies. Tahtaoui C; Guillier F; Klotz P; Galzi JL; Hibert M; Ilien B J Med Chem; 2005 Dec; 48(24):7847-59. PubMed ID: 16302823 [TBL] [Abstract][Full Text] [Related]
14. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
15. The FRET signatures of noninteracting proteins in membranes: simulations and experiments. King C; Sarabipour S; Byrne P; Leahy DJ; Hristova K Biophys J; 2014 Mar; 106(6):1309-17. PubMed ID: 24655506 [TBL] [Abstract][Full Text] [Related]
16. Two-step FRET as a structural tool. Watrob HM; Pan CP; Barkley MD J Am Chem Soc; 2003 Jun; 125(24):7336-43. PubMed ID: 12797808 [TBL] [Abstract][Full Text] [Related]
17. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
18. Analysis of EGF receptor oligomerization by homo-FRET. de Heus C; Kagie N; Heukers R; van Bergen en Henegouwen PM; Gerritsen HC Methods Cell Biol; 2013; 117():305-21. PubMed ID: 24143984 [TBL] [Abstract][Full Text] [Related]
19. Proposal of a new method for measuring Förster Resonance Energy Transfer (FRET) rapidly, quantitatively and non-destructively. Helm PJ Int J Mol Sci; 2012 Sep; 13(10):12367-82. PubMed ID: 23202903 [TBL] [Abstract][Full Text] [Related]
20. Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors. Vuojola J; Lamminmäki U; Soukka T Anal Chem; 2009 Jun; 81(12):5033-8. PubMed ID: 19438245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]