These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25863062)

  • 1. Catch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
    Harder A; Möller AK; Milz F; Neuhaus P; Walhorn V; Dierks T; Anselmetti D
    Biophys J; 2015 Apr; 108(7):1709-1717. PubMed ID: 25863062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate.
    Milz F; Harder A; Neuhaus P; Breitkreuz-Korff O; Walhorn V; Lübke T; Anselmetti D; Dierks T
    Biochim Biophys Acta; 2013 Nov; 1830(11):5287-98. PubMed ID: 23891937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality.
    Walhorn V; Möller AK; Bartz C; Dierks T; Anselmetti D
    Sci Rep; 2018 Nov; 8(1):16849. PubMed ID: 30442949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical aspects of the biological catch bond.
    Prezhdo OV; Pereverzev YV
    Acc Chem Res; 2009 Jun; 42(6):693-703. PubMed ID: 19331389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds.
    Göz M; Steinecker SM; Pohl GM; Walhorn V; Milting H; Anselmetti D
    Sci Rep; 2024 Jan; 14(1):2555. PubMed ID: 38297017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule inhibitors of protein interaction with glycosaminoglycans (SMIGs), a novel class of bioactive agents with anti-inflammatory properties.
    Harris N; Kogan FY; Il'kova G; Juhas S; Lahmy O; Gregor YI; Koppel J; Zhuk R; Gregor P
    Biochim Biophys Acta; 2014 Jan; 1840(1):245-54. PubMed ID: 24060749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-clamp spectroscopy identifies a catch bond mechanism in a Gram-positive pathogen.
    Mathelié-Guinlet M; Viela F; Pietrocola G; Speziale P; Alsteens D; Dufrêne YF
    Nat Commun; 2020 Oct; 11(1):5431. PubMed ID: 33110079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased deposition of glycosaminoglycans and altered structure of heparan sulfate in idiopathic pulmonary fibrosis.
    Westergren-Thorsson G; Hedström U; Nybom A; Tykesson E; Åhrman E; Hornfelt M; Maccarana M; van Kuppevelt TH; Dellgren G; Wildt M; Zhou XH; Eriksson L; Bjermer L; Hallgren O
    Int J Biochem Cell Biol; 2017 Feb; 83():27-38. PubMed ID: 27974233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biophysical insight into the RANTES-glycosaminoglycan interaction.
    Rek A; Brandner B; Geretti E; Kungl AJ
    Biochim Biophys Acta; 2009 Apr; 1794(4):577-82. PubMed ID: 19455751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of catch bonds involving cell-adhesion molecules.
    Marshall BT; Long M; Piper JW; Yago T; McEver RP; Zhu C
    Nature; 2003 May; 423(6936):190-3. PubMed ID: 12736689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two-pathway model for the catch-slip transition in biological adhesion.
    Pereverzev YV; Prezhdo OV; Forero M; Sokurenko EV; Thomas WE
    Biophys J; 2005 Sep; 89(3):1446-54. PubMed ID: 15951391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2.
    Duncan MB; Liu M; Fox C; Liu J
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1232-7. PubMed ID: 16343444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catch bonds: physical models and biological functions.
    Zhu C; McEver RP
    Mol Cell Biomech; 2005 Sep; 2(3):91-104. PubMed ID: 16708472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conformational change in heparan sulfate 3-O-sulfotransferase-1 is induced by binding to heparan sulfate.
    Edavettal SC; Carrick K; Shah RR; Pedersen LC; Tropsha A; Pope RM; Liu J
    Biochemistry; 2004 Apr; 43(16):4680-8. PubMed ID: 15096036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.
    Liu F; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051904. PubMed ID: 17279936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution probing heparan sulfate-antithrombin interaction on a single endothelial cell surface: single-molecule AFM studies.
    Guo C; Fan X; Qiu H; Xiao W; Wang L; Xu B
    Phys Chem Chem Phys; 2015 May; 17(20):13301-6. PubMed ID: 25921251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule force spectroscopy of cartilage aggrecan self-adhesion.
    Harder A; Walhorn V; Dierks T; Fernàndez-Busquets X; Anselmetti D
    Biophys J; 2010 Nov; 99(10):3498-504. PubMed ID: 21081100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds.
    Litvinov RI; Kononova O; Zhmurov A; Marx KA; Barsegov V; Thirumalai D; Weisel JW
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8575-8580. PubMed ID: 30087181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model.
    Pereverzev YV; Prezhdo OV; Thomas WE; Sokurenko EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):010903. PubMed ID: 16089930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparan sulfate 6-O-endosulfatases, Sulf1 and Sulf2, regulate glomerular integrity by modulating growth factor signaling.
    Takashima Y; Keino-Masu K; Yashiro H; Hara S; Suzuki T; van Kuppevelt TH; Masu M; Nagata M
    Am J Physiol Renal Physiol; 2016 Mar; 310(5):F395-408. PubMed ID: 26764203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.